

International Energy Agency
Photovoltaic Power Systems Programme

Photovoltaic Failure Fact Sheets (PVFS) 2025

What is IEA PVPS TCP?

The International Energy Agency (IEA), founded in 1974, is an autonomous body within the framework of the Organization for Economic Cooperation and Development (OECD). The Technology Collaboration Programme (TCP) was created with a belief that the future of energy security and sustainability starts with global collaboration. The programme is made up of 6.000 experts across government, academia, and industry dedicated to advancing common research and the application of specific energy technologies.

The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the TCP's within the IEA and was established in 1993. The mission of the programme is to "enhance the international collaborative efforts which facilitate the role of photovoltaic solar energy as a cornerstone in the transition to sustainable energy systems." In order to achieve this, the Programme's participants have undertaken a variety of joint research projects in PV power systems applications. The overall programme is headed by an Executive Committee, comprised of one delegate from each country or organisation member, which designates distinct 'Tasks,' that may be research projects or activity areas.

The IEA PVPS participating countries are Australia, Austria, Belgium, Canada, China, Denmark, Finland, France, Germany, Israel, Italy, Japan, Korea, Malaysia, Mexico, Morocco, the Netherlands, Norway, Portugal, South Africa, Spain, Sweden, Switzerland, Thailand, Türkiye, and the United States of America. The European Commission, Enercity, Solar Energy Research Institute of Singapore and Solar Power Europe are also members.

Visit us at: www.iea-pvps.org

What is IEA PVPS Task 13?

Within the framework of IEA PVPS, Task 13 aims to provide support to market actors working to improve the operation, the reliability and the quality of PV components and systems. Operational data from PV systems in different climate zones compiled within the project will help provide the basis for estimates of the current situation regarding PV reliability and performance.

The general setting of Task 13 provides a common platform to summarize and report on technical aspects affecting the quality, performance, reliability and lifetime of PV systems in a wide variety of environments and applications. By working together across national boundaries we can all take advantage of research and experience from each member country and combine and integrate this knowledge into valuable summaries of best practices and methods for ensuring PV systems perform at their optimum and continue to provide competitive return on investment.

Task 13 has so far managed to create the right framework for the calculations of various parameters that can give an indication of the quality of PV components and systems. The framework is now there and can be used by the industry who has expressed appreciation towards the results included in the high-quality reports.

The IEA PVPS countries participating in Task 13 are Australia, Austria, Belgium, Canada, Chile, China, Denmark, Finland, France, Germany, Israel, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, Thailand, the United States of America, and the Solar Energy Research Institute of Singapore.

DISCLAIMER

The IEA PVPS TCP is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA PVPS TCP do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

COVER PICTURE

Infrared image of an energised module string at night. One module has a not connected bypass diode. Thanks to photovoltaikbuero Ternus & Diehl GbR for the permission to use the image.

ISBN 978-3-907281-71-0: Task 13 Report: PV Failure Fact Sheets (PVFS) - Review 2025

AUTHORS

Main Contributors to PVFS Review 2025

Gabi Friesen, SUPSI, Switzerland Marc Köntges, ISFH, Germany Jay Lin, PV Guider Gernot Oreski, PCCL, Austria Gabriele C. Eder, OFI, Austria Peter Hacke, NREL, USA Paul Gebhardt, Fraunhofer ISE, Germany Ebra Özkalay, SUPSI, Switzerland Christof Bucher, BFH, Switzerland Mauro Caccivio, SUPSI, Switzerland Romain Couderc, CEA, France Sergiu Viorel Spataru, DTU, Denmark

Editors

Gabi Friesen, SUPSI, Switzerland Jay Lin, PV Guider Ulrike Jahn, Fraunhofer CSP, Germany

TABLE OF CONTENTS

Ack	nowle	dgements5)			
1	Introduction					
	1.1	PVFS structure	5			
	1.2	Example PVFS: Front delamination9)			
	1.3	List of PVFS 12)			
Ref	erenc	es13	3			
ANN	ANNEX (PV FAILURE FACT SHEETS)					

ACKNOWLEDGEMENTS

This report is supported by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under contract no. 03EE1120A, 03EE1120B and 03EE1120C, the Swiss Federal Office of Energy (SFOE) under the contract no. SI/502398-01, the Austrian Federal Ministry for Climate Action, Environment, Energy and Mobility (BMK), the Danish Energy Technology Development and Demonstration Programme (EUDP), project number 134-22016, "IEA PVPS Task13 - Reliability and performance of photovoltaic systems", and the Austrian Research Agency (FFG) under contract no. FO999908094_05102023_160512119.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308 in the project 38263 "R&D to Ensure a Scientific Basis of Qualification Tests and Standards," funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government.

1 INTRODUCTION

The photovoltaic failure fact sheets (PVFS) summarise some of the most important aspects of single failures. The target audience of these PVFSs are PV planners, installers, investors, independent experts and insurance companies, and anyone interested in a brief description of failures with examples, an estimation of risks and suggestions of how to intervene or prevent these failures.

The failure sheets are not intended to provide an in-depth exploration of the theoretical background of PV failures and their detection. Instead, they aim to summarize the key points outlined in the various IEA PVPS Task 13 technical reports [Herz22, Köntges14, Köntges16, Köntges17, Schill21, Jahn18, Herrmann21] and reference documents [Sinclair17, Packard12, Eder19, Moser17, Yang19, Walsh20, Petter11, India18, India13, PVSurvey19, DuPont20] that were used to prepare the PVFSs listed in Table 2. These failure sheets are specific to the component where the failure occurs.

The PVFS have been reviewed in 2024 to include latest PV module failures observed in the field and discussed in more detail in a technical IEA PVPS Task 13 report [Köntges25].

1.1 PVFS structure

The format of the PVFS is based on the failure description presented within the H2020 Solar Bankability project [SolBank20]. A rating system for the estimation of the severity of a failure is used here which simplifies the approach proposed within the IEA PVPS Task 13 [Köntges14] by implementing the rating system proposed by the Sinclairs [Sinclair17]. The correlation between the different failures is highlighted in the text by using bold characters. Each PVFS is structured into 1 to 3 pages. The first page is a descriptive page, whereas the remaining pages contain examples composed of a picture, a legend and an estimation about its severity. The first page is structured as follows:

Component

The PV system components are divided into:

- (1) PV module (including junction box)
- (2) Cables and interconnectors (at module, string and combiner box level)
- (3) Mounting (structure, clamps and screws)
- (4) Inverter

Defect

Short name describing the failure/defect.

Appearance

Description of how the defect looks like.

Detection

Description of methods which can be used to detect the failure. Detection methods in brackets lists secondary methods, which do not detect the failure with absolute certainty or which can be used in addition to other methods. Following abbreviations are used:

Abbreviation	Detection methods
VI	Visual inspection
IRT	Infrared thermography
EL	Electroluminescence
IV	Daylight I-V measurement
UV	UV fluorescence
STM	Signal transmission method
MON	Data monitoring
dIV	Dark I-V measurement
BYT*	Bypass diode testing
VOC	V _{oc} measurement
INS	Insulation testing

Table 1: Abbreviations of detection methods.

*useful background information

https://photovoltaikbuero.de/en/pv-know-how-blog-en/checking-bypass-diodes-on-solar-panels-part-1/ https://www.hioki.com/euro-en/products/pv/solar-panel/id_6647 https://emazus.com/euro-en/product.st/

https://emazys.com/pv-module-test/

Origin

Description of the failure and its main causes and origin (1. Material and production, 2. Transport and installation, 3. Operation and maintenance).

Impact

Description of the impact on the safety, performance and reliability of the component and system and its severity. For every failure, a range of possible ratings is given, one for the safety and one for the performance.

A failure is defined as a safety failure when it endangers somebody who is applying or working with PV modules or simply passing the PV modules. Three categories are defined in Figure 1.

Safety category	Description
	Failure has no effect on safety.
f e m	Failure may cause a fire (f), electrical shock (e) or a physical dan- ger (m) if a follow-up failure and/or a second failure occurs.
f e m	Failure can directly cause a fire (f), electrical shock (e) or a physical danger (m).

Figure 1: Safety categories.

A failure is defined as a performance failure when it impacts the performance and/or reliability of a system. Five categories are defined in Figure 2. They go from 1 (low severity) to 5 (high severity).

Performance category	Description
	The defect has no direct effect on performance.
	The defect has a minor impact on performance.
	The defect has a moderate impact on performance.
	The defect has a high impact on performance.
	The defect has a catastrophic impact on performance.

For each category, the expected loss is estimated on the component level and if no mitigation measure is implemented. It can range from no power degradation (0%), over power degradation below detection limit (<2-3%), power degradation within warranty (<0.7-1%/year) and power degradation out warranty (>0.7-1%/year) to catastrophic power degradation (>3%/year).

Mitigation

Description of the corrective actions to be done on a short and medium term when detecting a failure and preventive actions to be implemented to avoid the failure from the beginning. Preventive actions are separated into recommended actions, representing the minimum requirement for small residential systems and optional actions for large scale systems.

The general rule for intervention in case of a failure is: All components with a direct safety risk or a performance severity of 5, highlighted in red, should be replaced or repaired. Regular inspections should be performed to monitor the status of the not replaced or repaired components.

1.2 Example PVFS: Front delamination

The delamination of the encapsulant **FS1-3: Front delamination** is used here as an example to explain the FS structure and rating system.

Component Defect	Module Front delamination					PVFS 1-3vs.01	
Appearance	Any local separation of the layers between (i) the front glass and the encapsulant or (ii) the cell and the encapsulant, visible as bubbles or as bright, milky area/s. It may appear continuous or in spots. The position and size of the delamination or bubble depends on the origin and progress of the failure.						
Detection	VI, (INS)						
Origin	The adhesion between the glass, encapsulant, active layers, and back layers can be compro- mised for many reasons. Typically, it is caused by the manufacturing process (e.g. poor cross linking of EVA, too short lamination times, too high pressure in the laminator, contaminations, improper cleaning of the glass, incompatibility of EVA with soldering flux, inadequate storage of the raw material) or environmental factors (e.g. thermal stresses, external mechanical stresses, UV). Delamination is generally followed by moisture ingress and corrosion. It is therefore more frequent and severe under hot and humid conditions						
	Production		Installatio	n 🗌	0	Operatio	on 🔲
Impact	Delamination or bubbles do not automatically pose a safety issue, but they can result in re- duced insulation of the component and increased safety risk when they form a continuous path between electric circuit and the edge due to possible water ingress. Moisture in the mod- ule will decrease performance due to an increase of series resistance, affect long term relia- bility and in some cases also the structural integrity of the module. Moreover, delamination at interfaces in the optical path will result in additional optical reflection and subsequent decrease in current. This can be the origin of current mismatch. If the mismatch is significant, it will trigger the bypass diode and cause further power loss. The inverter might also shut down due to leakage current's leading to a further performance loss. Manufacturing related delamination issues often affects a relevant percentage of modules within the same production batch and consequentially has a big impact on system performance.						
	Safety: 🔴	🕘 🚭 🕘		Performance:	1 2	3 4 5	•
Mitigation	Corrective act	ions	Preventiv (recomme	e actions ended)	F (Prevent optiona	ive actions I)
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules. In case of in- dividual module testing all modules which failed the insu- lation and/or wet-leakage test should be replaced.		Check va certificatio fault dete other devi	Check validity of IEC 61215 certification and BOM, ground fault detection by inverter or other devices at all time.		Extende neat), j ions (e of EVA) nspecti	ed testing (e.g. damp pre-shipment inspec- .g. cross linking level regular visual system ons.

Figure 3: First page of PVFS example with general information.

Figure 4: Remaining pages of a PVFS contain examples composed of a picture, a legend, and an estimation about its severity.

The first section of the sheet describes the **appearance** or how to recognise a specific failure and which **detection** methods are available. Delamination is generally easily detectable by visual inspection (VI) of the modules from the front. Insulation measurements (INS) can give a hint of a severe delamination, but it is not the first method to detect an early delamination, reason why it is put in brackets.

The second section describes the **origin** or in which phase of the lifetime of a PV system the failure occurs and what the main causes are. Delamination problems have its origin mainly in the quality of the raw material, the manufacturing process and/or the environmental factors to which the modules are exposed during its operational lifetime. Transport and installation do not generate any delamination problems.

The third section describes the **impact** the failure has on the safety and performance of the component and PV system. Below the general description the severity rating according to Figure 1 and Figure 2 is given. The severity rating in the first page gives the full range of possible ratings observable in the field and how the failure can evolve over the whole lifetime of a PV system. The rating in the examples gives instead a snapshot of the gravity of the failure for a specific case at a certain time. The pictures are taken from literature or case studies and give only a partial picture of the situation and are used to explain the potential levels of impact here.

The delamination of the potting material does not automatically pose a **safety risk.** It is therefore often rated as not critical (see example 1.3.1-1.3.7, 1.3.10 and 13.11 in Annex 1), but depending on the propagation of the failure it can develop into a more severe safety failure. When creating a continuous path between the electric circuit and the edge of the module (see

example 1.3.13-1.3.15), delamination can lead to electric leakage currents with a direct risk of electrical shock or the risk can occur later, due to the progress of the delamination and/or the ingress of moisture. This is particularly the case when the original delamination is close to the edge of the module or the junction box, or if it is going over a very extended area (see example 1.3.8-1.3.12). The **performance loss risk** for modules with delamination problems ranges from 1 to 5. Very small delamination areas on top of a cell or outside the cell area and not combined with other failures, are classified as having no impact (1) or a minor power loss typically below the detection limit (2), if the failure is not increasing over time (see example 1.3.1-1.3.4, 1.3.8, 1.3.10 and 1.3.11). The severity is in the range of (2-4) when the delamination area is getting larger (see example 1.3.7 and 1.3.9) or if it is occurring in combination with follow-up failures like moisture ingress (see example 1.3.14) or an insulation failure (see example 1.3.13). It increases also when occurring in combination with a second failure like discoloration (yellowing or browning) of the encapsulant or backsheet (see example 1.3.6, 1.3.7, 1.3.13), or cell cracking (see example 1.3.5). A catastrophic performance loss of (5) is reached when the cell mismatch is so large that one or more bypass diodes could be activated (see example 1.3.13 and 1.3.14).

The last section describes the **mitigation** measures. In case of delamination, all modules that no longer guarantee the electrical safety or insulation resistance or have an active bypass diode, have to be replaced. Not replaced modules with minor delamination have to be monitored by regular visual inspections and ground fault detection. Basic preventive measures consist in selecting certified and tested products only. In case of large-scale systems regular system inspection is recommended.

1.3 List of PVFS

Table 2: List of PV Failure Fact Sheets.

No	Component	Failure name
1-1	PV module	Cell cracks
1-2	PV module	Discolouration of encapsulant or backsheet
1-3	PV module	Front delamination
1-4	PV module	Backsheet delamination
1-5	PV module	Backsheet cracking
1-6	PV module	Backsheet chalking (whitening)
1-7	PV module	Burn marks
1-8	PV module	Glass breakage
1-9	PV module	Cell interconnection failure
1-10	PV module	Potential induced degradation
1-11	PV module	Metallisation discolouration/corrosion
1-12	PV module	Glass corrosion or abrasion
1-13	PV module	Defect or detached junction box
1-14	PV module	Junction box interconnection failure
1-15	PV module	Missing or insufficient bypass diode protection
1-16	PV module	Not conform power rating
1-17	PV module	Light induced degradation in c-Si modules
1-18	PV module	Insulation failure
1-19	PV module	Hot spot (thermal patterns)
1-20	PV module	Soiling
2-1	Cable and Interconnector	DC connector mismatch
2-2	Cable and Interconnector	Defect DC connector/cable
2-3	Cable and Interconnector	Insulation failure
2-4	Cable and Interconnector	Thermal damage in combiner box
3-1	Mounting	Bad module clamping
3-2	Mounting	Inappropriate/defect mounting structure
3-3	Mounting	Module shading
4-1	Inverter	Overheating (temperature derating)
4-2	Inverter	Incorrect installation
4-3	Inverter	Complete failure (not operating)

The list does not pretend to be exhaustive or updated. The complete list with all PVFS

REFERENCES

[DuPont20] DuPont global PV reliability, 2020 Field analysis, Dupont, <u>https://www.dupont.com/news/20200512-2020-global-pv-reliability-report.html</u>, last access Nov 2024.

[Eder19] G.C. Eder et al., "Error analysis of aged modules with cracked polyamide backsheets," *Solar Energy Materials & Solar Cells*, Vol. 203, December 2019.

[Herrmann21] W. Herrmann, G. C. Eder, B. Farnung, G. Friesen, M. Köntges, B. Kubicek, O. Kunz, H. Liu, D. Parlevliet, I. Tsanakas and J. Vedde, Qualification of Photovoltaic (PV) Power Plants using Mobile Test Equipment, Report IEA-PVPS T13-24: ISBN 978-3-907281-12-3, 2021.

[Herz22] M. Herz, G. Friesen, U. Jahn, M. Köntges, S. Lindig, D. Moser, IEA PVPS Task 13: Performance, Operation and Reliability of Photovoltaic Systems - Quantification of Technical Risks in PV Power systems, Report IEA-PVPS T13-23:2022: ISBN 978-3-907281-11-6, 2022.

[India13] Y.R. Golive et al., "All-India India Survey of Photovoltaic Module Degradation: 2013," Mumbai, India, 2013.

[India18] R. Dubey et al., "All-India India Survey of Photovoltaic Module Degradation: 2013," Mumbai, India, 2018.

[Jahn18] U. Jahn, M. Herz, M. Köntges, D. Parlevliet, M. Paggi, I. Tsanakas, J. S. Stein, K. A. Berger, S. Ranti, R. H. French, M. Richter and T. Tanahashi, "Review on Infrared and Electroluminescence Imaging for PV Field Applications", Report IEA-PVPS T13-10:2018: ISBN 978-3-906042-53-4, 2018.

[Köntges14] M. Köntges, S. Kurtz, C. Packard, U. Jahn, K. A. Berger, K. Kato, T. Friesen, H. Liu, M. Van Iseghem, J. Wohlgemuth, D. Miller, M. Kempe, P. Hacke, F. Reil, N. Bogdanski, W. Herrmann, C. Buerhop Lutz and G. Friesen, Review of Failures of Photovoltaic Modules, Report IEA-PVPS T13-01: ISBN 978-3-906042-16-9, 2014.

[Köntges16] M. Köntges et al., "Mean Degradation rates in PV systems for various kinds of PV module failures," in Proc. 32nd Eur. *Photovolt. Sol. Energy Conf. (EUPVSEC)*, 2016, pp. 1435 - 1443.

[Köntges17] M. Köntges, G. Oreski, U. Jahn, M. Herz, P. Hacke, K. A. Weiss, G. Razongles, M. Paggi, D. Parlevliet, T. Tanahashi and R. H. French, Assessment of Photovoltaic Module Failures in the Field, Report IEA-PVPS T13-09: ISBN 978-3-906042-54-1, 2017.

[Köntges25] M. Köntges, J. Lin, A. Virtuani, G. Eder, J. Zhu, G. Oreski, P. Hacke, J.S. Stein, L. Bruckman, P. Gebhardt, D. Barrit, M. Rasmussen, I. Martin, K.O. Davis, G. Cattaneo, B. Hoex, Z. Hameiri, E. Özkalay, "Degradation and Failure Modes in Pholtovoltaic Cell and Module Technologies", Report IEA-PVPS T13-29:2025: ISBN 978-3-907281-71-0, 2025.

[Mahmood2024] A. Mahmood, R. Santamaria, T.r Kari, P.B. Poulsen, S.V. Spataru, "Diagnosing Potential Induced Degradation in Crystalline Silicon Photovoltaic Modules", in Proc. 41st Eur. *Photovolt. Sol. Energy Conf. (EUPVSEC)*, 2024.

[Moser17]D. Moser et al., "Report on technical risks in PV project development and PV
operation,"https://www.tuv.com/content-media-files/master-

<u>content/services/products/p06-solar/solar-downloadpage/solar-bankability_d1.1_d2.1_tech-</u> <u>nical-risks-in-pv-projects.pdf</u>, last access Nov 2024.

[Schill21] C. Schill, D. Parlevliet, A. Anderson, B. Stridh, L. Burnham, C. Baldus-Jeursen, L. Micheli, E. Urrejola, E. Whitney and G. Mathiak, Soiling Losses – Impact on the Performance of Photovoltaic Power Plants, Report IEA-PVPS T13-21: ISBN 978-3-907281-09-3, 2021.

[Sinclair17] K. Sinclair, M. Sinclair, "Silicon solar module visual inspection guide: Catalogue of Defects to be used as a Screening Tool", https://www.engineeringforchange.org/wp-content/uploads/2017/09/Solar-PV-Product-Visual-Inspection-Guide.pdf. last access Nov 2024.

[SolBank20] "Solar Bankability project website," accessed: 2020-04-28. [Online]. Available: http://www.solarbankability.org/home.html.

[Packard12] C. Packard, J. Wohlgemuth, S. Kurtz, "Development of a Visual Inspection Data Collection Tool for Evaluation of Fielded PV Module Condition," Technical Report NREL/TP-5200-56154 August 2012, https://www.nrel.gov/docs/fy12osti/56154.pdf.

[Petter11] K. Petter et al., "Long Term Stability of Solar Modules Made from Compensated SoG-Si or UMG-Si," *Energy Procedia*, Volume 8, page 365-370, 2011.

[PVFS21] https://iea-pvps.org/research-tasks/performance-operation-and-reliability-of-photovoltaic-systems/documents/ follow link to "PV Failure Fact Sheets", last access Aug 2021.

[PVSurvey19] https://iea-pvps.org/research-tasks/performance-operation-and-reliability-of-photovoltaic-systems/documents/, follow link "Explanation of the PV-System Survey sheet" Version:21 October 2019, last access 04 March 2021.

[Walsh20] T.M. Walsh et al., "Singapore Modules - Optimised PV Modules for the Tropics," *Energy Procedia*, Volume 15, page 388-395, 2020.

[Yang19] H.E. Yang, R.H. French and L.S. Bruckman, "Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules," ISBN 978-0-12-811545-9, 2019.

ANNEX (PV FAILURE FACT SHEETS)

Component	Module	DV/ES 1 1							
Defect	Cell cracks								
Appearance	Cell cracks are cracks in the silicon substrate of the photovoltaic cells. Most of the cell cracks cannot be seen by the naked eye. Only large cracks or where the backsheet is visible through the cracks can be seen. Cell cracks can be easily detected through imaging techniques like electroluminescence or UV fluorescence. Cell cracks can have different lengths and orientations (crack patterns). Small cell cracks (micro-cracks) become visible by eye when they form snail tracks or when photobleaching or delamination takes place along the cracks. A snail track is a discoloration of the silver paste of the front metallisation of solar cells which occurs typically 3 months to 1 year after installation of the PV modules. Affected metal fingers on cells may be silver, yellow or brown in appearance, this effect can also be seen on cell edges. Photobleaching is a counteracting effect to the yellowing of the encapsulant and it occurs along the cracks and the borders of the cells. Sometimes delamination along cracks is visible as small bubbles along the cell cracks.								
Detection	EL, UV (IRT, VI, IV)								
Origin	Cell cracks can have origin in all lifetime phases of a PV module: production, transport, instal- lation and operation. In production, cell cracks can occur during wafer, cell and module manu- facturing. Especially the stringing and soldering process of the solar cells can damage the cells. Furthermore the cutting of full cells to half or multiple cut cells can lead to cracking at the cutting cell edge. After production, major sources for cell cracks are the packaging and transport of the modules, and the installation. After installation, external forces like hail, heavy snow weight or strong wind may result in cell cracks. Once cell cracks are present, further mechanical and thermomechanical stresses can lead to the propagation of the cracks into longer and wider cracks. Some crack patterns can give indications on the origin of the failure, but the final cause of cell breakage is not always easy to identify. A repetitive crack pattern can be for example caused by a production failure, whereas PV modules showing dendritic crack patterns have been probably exposed to heavy mechanical loads. Snail tracks can be found in a great variety of solar modules, but not in all. The combination of different materials (encapsulant and back sheets) with LIV radiation and temperature plays an important role in the creation of spail tracks								
	Production	Installation	Operation						
Impact	Cell cracking does not necessarily lead to a failure of the module. The presence of a crack of any size that does not, or likely will not through its propagation, remove more than 10% of that cell's area from the electrical circuit can be considered to have limited to no impact on the performance. Even if each cell in a 60 full-cell module is cracked, but do not lead to a separated cell area, the power loss of the module is typically below 2.5% of the nominal power. Compared to former ribbon based modules with 2 to 4 cell interconnect ribbons, more recent multi wire/bus bar solar modules demonstrates much lower power losses due to cell cracks. For multi wire PERC modules 0.2% power loss per dendritic like cracked half-cell is typical. In cold and snow climate zones cell cracks seem to have a more pronounced impact. Here relatively high mean degradation rates of up to 7%/y can be found for full cell modules. Besides the risk of power loss there is a risk of hot spots and burn marks due to inactive cell parts. Snail tracks are to pave to have a point to have an ore produced to have cell parts.								
	Safety:	Performance: 12	3 4 5						
Mitigation	Corrective actions	Preventive actions (recommended)	Preventive actions (optional)						
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.	Adequate transport proce- dures, installation and clean- ing by trained personal, in case of higher snow or hail risk use of therefore certified modules. Multiwire modules mitigate degradation risk.	Request EL pictures from pro- duction, pre-shipment or ware- house inspection, EL images with mobile laboratory before or during installation, regular EL inspection or after sever weather conditions.						

- I

EXAMPLES	(page1)				P٧	/FS 1-1vs.02
Examples 1-3						
	Cell chipping. A is missing from cell, but does r lized region [Kör	very small region the edge of the not enter metal- ntges14].	Large crack at o by eye - small p (<10%) is no lo connected [Kön	cell corner visible portion of the cell pnger electrically tges14].	Cell crack with lation of any ce gation could is >10% [Köntges	snail track. No iso- ill part. The propa- solate a cell area .14].
Severity		1		⊢21		H <mark>2</mark>
Examples 4-6						
	bleaching effect. mistaken for sn ges14].	This may not be ail tracks [Könt-	delamination, E photo bleaching	s with extensive VA browning and [Yang19].	EL image of 2 isolates more the area [By the Rheinland].	cell cracks which nan 10% of the cell courtesy of TUV
Severity	f	⊢234 ⊣	fe	⊢2345	f	
Examples 7-9	Snail track exam	pple [Yang19].	Snail track exam	nple [Yang19].	EL of cell crack	ks with snail tracks
Severity	f e		f e		[Köntges14].	⊢234⊣

L.

EXAMPLES	6 (page2)			PVFS 1-1 vs.02
Examples 10-12	Zoom of snail track with delami-	Zoom of snail track with bro	wined Zoom of sr	ail track with delamina-
	nation [Yang19].	fingers [Sinclair17].	tion [By th PVLab].	ne courtesy of SUPSI
Severity				e ⊢234 ⊣
Examples 13-15	Cell crack with EVA delamination By the courtesy of TUV Rhein-	Typical EL picture of a cell caused by hail [By the co	crack Repetitive pact of solu	crack pattern due to im-
Severity	land]. (see also PVFS 1-3)	of TUV Rheinland].	courtesy of	SUPSI PVLab].
16-17	Typical EL picture of cell cracks c neous mechanical load (X-crack breakage [Köntges14]	aused by a heavy homoge- pattern) also without glass	Cell cracks in a m lar cells [By the co	odule with shingled so- urtesy of Aerial Inspec-
Severity	f	<u>⊢ + 3 4 - 1</u>		1 2
			-	

- I

EXAMPLES	(page3)	PVFS 1-1 vs.02
Example 18	b a	
	Manufacturer related cell cracks (a) in half cut cells and they grew into larger with inactive cell areas below 5% per cell (B) [Köntges24].	ones after transportation
Severity		

Component	Module						
Defect	Discolouration of encapsu	Discolouration of encapsulant or backsheet					
Appearance	The degradation of the encapsulation or backsheet materials is becoming visible as a light yellow to dark brown discolouration. Colour can be next to or above the cells, along the busbars or cell interconnects or on the back or front side of the backsheet. Often discolouration is inhomogeneous and follows spatial patterns depending on the type of module construction. Typically, for glass/backsheet modules the encapsulant discolouration occurs in the central region of the cells with wide clear encapsulant areas, or "frames" around the cell edges. Discolouration of the backsheet can be observed at the module edges of between neighbouring solar cells. For glass/glass module constructions the encapsulant discolouration is mostly spatially uniform but can also show patterns of clearer areas over some cells. In glass/backsheet modules the location of these patterns generally correlates with cell cracks . In some cases, the discolouration is more pronounced in one or more cells of the module.						
Detection	VI, (IV, IRT)						
Origin	In the past, yellowing or browning was mostly associated with the degradation of the mostly used encapsulant ethylene vinyl acetate (EVA) but this problem was greatly solved by improved stabilisation of the polymer with additives, including UV absorbers and thermal stabilizers. If the choice of additives and/or their concentrations are inadequate, or the lamination process is inadequate or incomplete, the encapsulation material may discolour over time. The root cause of backsheet discolouration is either degradation of the cell side layer of the backsheet or caused by reactions of inter-diffusing additives at the encapsulant backsheet interface. The patterns of discolouration observed in the field can be very complex because of the diffusion of oxygen or the products of reaction, such as acetic acid, generated when heat and UV light interact with EVA. The presence of oxygen leads to the so-called photobleaching effect which creates a ring of transparent EVA around the perimeter of a cell or a cell crack. The case of single cells which are far darker than the adjacent cells, implies that the most discoloured cell was at higher temperature than the surrounding cells, perhaps because of						
	Production	Installation		Operat	ion 🔲		
Impact	Discoloration is a sign that the polymeric compounds within the module started to degrade. This type of degradation is predominantly considered to be first an aesthetic issue before a decrease of module current and power production is detected. Typically, mean yearly degra- dation rates due to yellowing are about 0.5%/a and may reach up to 1%/a in hot and humid or moderate climates. While it is uncommon for EVA discolouration to induce other failures within the cell, it may correlate to: high temperatures in the field, the generation of acetic acid and concomitant corrosion and embrittlement . Unless discolouration is very severe and localized at a single cell, where it could cause a substring bypass-diode to turn on, the discolouration of EVA does not present any direct safety issues. More critical is the discolouration of UV sensi- tive backsheets that in dependence of the used backsheet materials can be a precursor to a loss of mechanical properties (elastic behaviour) and cracking of backsheet due to thermo-						
	Safety:		Performance:	1 2 3	Τ		
Mitigation	Corrective actions	Preventive (recomme	e actions ended)	Preven (option	tive actions al)		
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.	Check val certification	idity of IEC 61 n and BOM.	215 Regula For are reques test sta triple I tion.	r system inspections eas with harsh climate, t modules pass higher andards, like double or EC 61215 test condi-		

Т

EXAMPLES	6 (page1)					PVF	S 1-2vs.02
Examples 1-3	kamples 3						
	Slightly browned tre of the cell with at the edges [Kö	EVA in the cen- n photobleaching ntges14].	Slightly browned tre of the cell with at the edges [Ind	EVA in the cen- h photobleaching dia18].	Yellowe side [Sii	d backsh nclair17].	neet from the in-
Severity		⊢ <mark>2</mark> 1		⊢231			1 2
Examples 4-6					Mars-		
	Dark discolourat between cells a and busbars [Si	ion at cell edges, nd over gridlines nclair17].	Dark discoloura zation [Sinclair1	tion over metali- 7].	Backshe [Sinclair	eet air [.] 17].	side yellowing
Severity		⊢ <u>23</u> 1		⊢ <u>23</u> 1	e		1 2
Examples 7-9		ned much faster	Yellowed backs	heet from the in-	Yellowir	ag of the	
	than the others of ing [Köntges14].	due to local heat-	side [By the cou	rtesy of PCLL].	combina sheet [Eder19	ig of the ation with caused].	backsneet in cracked back- by hot cell
Severity		H 2 3 1		1 2	f m	e	2345

L.

Component Defect	Module Front de	elamination					PVFS 1-3 vs.01
Appearance	Any local cell and t ous or in progress	Any local separation of the layers between (i) the front glass and the encapsulant or (ii) the cell and the encapsulant, visible as bubbles or as bright, milky area/s. It may appear continuous or in spots. The position and size of the delamination or bubble depends on the origin and progress of the failure.					
Detection	VI, (INS)						
Origin	The adhe mised for linking of improper of the ra stresses, therefore	The adhesion between the glass, encapsulant, active layers, and back layers can be compro- nised for many reasons. Typically, it is caused by the manufacturing process (e.g. poor cross inking of EVA, too short lamination times, too high pressure in the laminator, contaminations, mproper cleaning of the glass, incompatibility of EVA with soldering flux, inadequate storage of the raw material) or environmental factors (e.g. thermal stresses, external mechanical stresses, UV). Delamination is generally followed by moisture ingress and corrosion . It is therefore more frequent and severe under hot and humid conditions.					
	Productio	on 📃	Installatio	n 🗌		Operati	on 🔲
Impact	duced in path betw ule will de bility and interfaces in curren trigger the to leakag issues of conseque	ation of bubbles do no sulation of the comp veen electric circuit ar ecrease performance in some cases also the s in the optical path wi t. This can be the or e bypass diode and ca e current's leading to ten affects a relevant entially has a big impa	onent and d the edge due to an he structura ll result in a igin of curr ause furthe percentag act on syste	increased safet increased safet due to possible increase of serie al integrity of the additional optical rent mismatch. I er power loss. The erformance loss. e of modules with em performance.	water water es resi modu reflect f the ine inve Manu thin th	when the ingress istance, ule. More tion and mismate rter mig facturin e same	they can result in re - ney form a continuous affect long term relia- eover, delamination at subsequent decrease ch is significant, it will thalso shut down due g related delamination production batch and
	Safety:			Performance:	1 2	3 4 5	5
Mitigation	Correctiv	e actions	Preventive actions (recommended)			Prevent (optiona	tive actions al)
	Modules risk or a be replace tions sho tor the s placed m dividual modules lation and should be	with a direct safety severity of 5 should ced. Regular inspec- uld be done to moni- tatus of the not re- odules. In case of in- module testing all which failed the insu- d/or wet-leakage test e replaced.	ty Check validity of IEC 61215 Extended testing (extended t			ed testing (e.g. damp pre-shipment inspec- e.g. cross linking level regular visual system ons.	

EXAMPLES	6 (page1)				P	VFS 1-3vs.01
Examples 1-3	Encapsulant de critical position	elamination in un-	Encapsulant di cell caused by	elamination from	Encapsulant cell along grid	delamination from
	of SUPSI PVLa	ab].	cess [By the co PVLab].	ourtesy of SUPSI	[Packard12].	
Severity		1		1 2		1 2
Examples 4-6	Encapsulant or glass (spotted ture) along the ard12].	delamination from due to glass tex- bus bars [Pack-	Encapsulant de a cell crack [k also PVFS 1-1)	elamination along Köntges16]. (see	Encapsulant cell edges in browning [Pa	delamination near combination with cell ckard12].
Severity		1 2		⊢ <u>234</u> ⊣		H 2 3 1
Examples 7-9	Delamination in (see also FS 1	n front of cell in the nodule [Moser17]. -2)	Delamination a connections o module (junction courtesy of SU	at module insert f a glass/glass on box) [By the PSI PVLab].	Delamination ges14].	at cell edges [Könt-
Severity		⊢234⊣	e	1 2	e	⊢234⊣

Т

EXAMPLES	i (page2)				PVF	FS 1-3 vs.01
Examples 10-12						
	Encapsulant de ders [Sinclair17	elamination at bor- 7].	Encapsulant de a bus-bar in a module edge [N	elamination along cell close to the /loser17].	Encapsulant dela glass (spotted o ture) at the edge clair17].	amination of from due to glass tex- e of the cell [Sin-
Severity	•	1	•	1 2 + + + + +	e	⊢23-11
Examples 13-15						
	Delamination c ous path betwo and the edge [l	creating a continu- een electric circuit Moser17].	Delamination [Köntges17]. (s	with corrosion ee also FS1-11)	Delamination ca ment of backshe of encapsulant f the courtesy of S	nused by detach- bet with exposure rom the back [By SUPSI PVLab].
Severity	e	⊢ <u>+</u> 3 4 5	•	<u>⊢</u>	e	

Component Defect	Module Backshe	et delamination				Р	VFS 1-4vs.01
Appearance	Any local backsheet tion). The worst case depend on	Any local separation of the polymeric back sheet layers leading to an air gap between the backsheet and the rest of the module, or within the multilayer backsheet (=internal delamination). The backsheet may appear wavy, with locally limited bumps, bubbles or ripples. In the worst case, one or more layers may peel off. The position and extent of the delamination will depend on the cause and progression of the failure.					
Detection	VI, (INS)						
Origin	There are market. Wi layer) inter degradatic one or mo the backsh from a lact the delami from differ (material in UV and mo frequent a insufficient	here are many different forms and compositions of polymeric multilayer backsheets on the larket. With laminated backsheets (polymeric layers adhered to each other by a thin adhesive eyer) internal delamination can appear: the multiple layers may delaminate upon adhesive egradation, which may lead to local delamination of two subsequent layers or a peel-off of ne or more layers. Co-extruded backsheet are prone to internal lamination. Delamination of ne backsheet from the encapsulant can appear with all types of backsheets and originates om a lack of adhesion between the backsheet are (i) thermo-mechanical stress originating om differing CTE of the individual polymeric layers, (ii) chemical reactions at the interfaces naterial incompatibility) or deteriorated interfacial bonding as a result of the attack from heat, V and moisture or (iii) external mechanical stress applied on the module. Therefore, it is more equent and severe under hot and humid conditions. Delamination can be also caused by an nsufficient lamination process e.g. too short lamination times.					
	Production		Installation				
Impact	If delamina an immedi the heat co is not furth minimal. H edge of a r provide a co to the press serious sa putting me cause a co system vol	ation occurs forming iate safety issue. The onduction/dissipation her mechanically cra lowever, if delamina module there would be direct pathway for liquisence of dew. That ca fety concern. Simila echanical stress on onnection failure to a litage. In multilayer be	bubbles in at area wo through th acked or ex- tion of the be more se uid water to an provide rly, delami live compo a bypass d acksheets	a central, open ould likely operation of backsheet is backsheet occur rious safety concorrious safety concorrious of enter the module a direct electrication nation near a ju- ponents with the operation the severity deponents	area c e at slig disturbe rformar urs nea cerns. E le durir al pathv nction I danger ly resul ends al	of the back ghtly high ed. But as nce and s ar a junctic Delaminati ng a rainsto way to grou box can c of breaka It in an uni	k, it will not present er temperatures as long as the bubble afety concerns are on box, or near the on at the edge may orm, or in response und creating a very ause its loosening, age. A break might mitigated arc at full ch layer is affected.
	Safety:			Performance:	1 2	3 4 -	
Mitigation	Corrective	actions	Preventiv (recomme	e actions ended)	F ((Preventive optional)	actions
Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules. In case of in- dividual module testing all modules which failed the insu- lation and/or wet-leakage test should be replaced.		Check validity of IEC 61215 certification and BOM. Ground fault detection by in- verter or other devices at all time.		y in- at all	Regular sy	stem inspections.	

EXAMPLES	6 (page1)				PV	/FS 1-4vs.01
Examples 1-3						
	Multiple bubble and edge of the ges16].	s in the centre backsheet [Könt-	Blisters because rier, such as alur ges17].	e of vapour bar- ninium foil [Könt-	Big central bu ination [Köntg	bble + wavy delam- es14].
Severity	e		e	1234 -	e	1
Examples 4-5						
	Backsheet delay rect exposure of the courtesy of S	mination with di- encapsulant [By SUPSI PVLab].	Delamination of exposure of enc courtesy of SUP	top layer without apsulant [By the SI PVLab].		
Severity	e e		f e	1 2 3		

- I

Component	Module Backsbeet cracking				PVFS 1-5 vs.02		
Appearance	Any damage of the backsheet (surface or whole stack) that is visible as crack, burst or scratch. The location and extent of the cracks depend on the cause and progression of the failure. The cracked area may be localized (e.g bursted bubble, scratch), extend along specific module areas (e.g. long or between the cells, along the busbars) or extend over large or the full area of the module (e.g embrittled surface). The crack can be very deep and affect the back sheet stack.						
Detection	VI, (INS)						
Origin	The degradation of the backsh thermal stress, external mecha with the multimaterial composi- lation (local cuts, scratches). If followed by moisture ingress a humid conditions. The use of material combinations (backsh failures. Discolouration and s cracks or bursted bubbles can the backsheet.	The degradation of the backsheet can be caused by environmental factors like UV-irradiation, nermal stress, external mechanical stress or by internal stress (e.g. thermomechanical stress <i>i</i> th the multimaterial composite PV-module) or incorrect handling during transport and instal- ation (local cuts, scratches). Deep backsheet cracking (whole backsheet stack split) is often blowed by moisture ingress and corrosion . This is more frequent and severe under hot and umid conditions. The use of low-quality material (e.g. low UV resistance) or incompatible naterial combinations (backsheet ↔ encapsulant) causes most of the premature degradation ailures. Discolouration and strong chalking can be precursors for backsheet cracking. Deep tracks or bursted bubbles can be the result of local hotspots/burn marks that split or break he backsheet.					
	Production	Installatio	n 📃	Operat	ion 🔲		
Impact	A broken backsheet can caus potential ground fault. On the lo into the module which induces case of deep cracks reaching promised and safety is not any	e electric ong-term, p further fail the active more fulfill	al insulation failu ower degradation ures (e.g. corrosid part of the cells, ed.	re, posing due to the on, delamin the insulation	a safety hazard and a penetration of moisture ation) can occur. In the on is immediately com-		
	Safety:		Performance:	1234	5		
Mitigation	Corrective actions	Preventiv (recomm	e actions ended)	Prever (option	itive actions al)		
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules. In case of in- dividual module testing all modules which failed the insu- lation and/or wet-leakage test should be replaced.	Ground fault detection by in- verter or other devices at all time, check validity of IEC 61215 certification and BOM, visual inspection before in- stallation.		in- Regula all Installa EC tool. in-	r system inspections. ition of arc detection		

EXAMPLE	S (page1)				F	PVFS	1-5vs	6.02
Examples 1-3		1						
	Cracked backsh tion with yellow cell [Eder19].	neet in combina- ing under a hot	Squared cracks terspaces [Eder	beneath cell in- 19].	Cracking ard12].	betwee	n cells	[Pack-
Severity	f m e	⊢ <mark>2345</mark>	f m e	⊢ <mark>2345</mark>	f m	e	⊢2 3	4 5
Examples 4-6						and the second second		a la de la de la de
	Longitudinal cra der bus bars [Ed	acks located un- ler19].	Backsheet crack	ing [DuPont20].	Backshee	t crackir	ng [DuPoi	nt20].
Severity	f m e	⊢ <mark>2345</mark>	f m e	⊢ <mark>2345</mark>	f m	e	⊢2 3	4 5
Examples 7-8	10.43							
	Localized supe [Köntges17].	erficial damage	Deep scratch o the courtesy of T	n backsheet [By [UV Rheinland].	PVDF out courtesy c	er layer of PCCL	cracking].	[By the
Severity	f e m		f m e	1 2	f e	m	− 2 3	4 5

- I

Component Defect	Module Backsheet chalking (white	odule acksheet chalking (whitening)					
Appearance	White powder is detectable on a finger over the backsheet. It appearance.	White powder is detectable on the external surface of the backsheet. It can be seen by passing a finger over the backsheet. It can be removed. The backsheet has usually a rough or dull appearance.					
Detection	VI						
Origin	Chalking is caused by the pho layer containing inorganic pign layers as UV blocker.	halking is caused by the photothermal degradation of the polymers in the outer backsheet yer containing inorganic pigments. For example, TiO ₂ pigments are often used in the outer yers as UV blocker.					
	Production	Installatio	n 🗌	Operat	ion 🔲		
Impact	Chalking does not affect module safety or performance on first sight, but it can be a sign for an ongoing degradation of the backsheet and a precursor for severe backsheet cracking. Due to the degradation-induced reduction of UV protection, more serious failures, such as back sheet cracking and insulation failures can occur . Enhanced moisture diffusion into the en capsulant/active PV-parts can lead to corrosion of cells and connectors, having a negative impact also on the performance						
	Safety:	Performance: 1		1	<u> </u>		
Mitigation	Corrective actions	Preventive actions (recommended)		Prever (option	ntive actions al)		
	Regular inspections should be done to monitor the pro- gress of the observed failure. Ground fault detection by in- verter or other devices at all time.	Check validity of IEC 61215 certification and BOM.		215 Regula	ar system inspections.		

EXAMPLES	(page1)				PVF	S 1-6 vs.01
Examples 1-2						
	Finger with whi courtesy of TU ^v	ite powder [By the V Rheinland].	Fingerprint on chalking [By the Rheinland].	a module with e courtesy of TUV		
Severity	•	1	•	1		

- I

Component Defect	Module Burn marks				PVFS 1-7 vs.01		
Appearance	Burn marks are visible with th lead to bubbling or melting of the backsheet. Burn marks o inspection with an IR camera i not be visible by IR inspection	the naked ey the polyme on the backl if the back of in case not	re as burnt, black ric encapsulant, a heet may be not of the module is r further or ongoing	kened are and/or gla visible fro not access g heating o	a/s. The burn mark may ss breakage or a hole in om the front requiring an sible. They may however occurs.		
Detection	VI, IRT, (EL)						
Origin	The defect is associated with p errors (e.g weak solder bonds, rors, metal particles) and/or t back-sheet) in combination w cuited bypass diodes , revers tion, heavy snow loads, a ligh shading during long-term PV s tion parts to break. Burn marks that further localizes the curren burn mark.	ie defect is associated with parts of the module that became very hot because of production rors (e.g weak solder bonds, ribbon breakage, incomplete cell edge isolation, alignment er- rs, metal particles) and/or transportation/handling errors (e.g, cracked cells, damaged ick-sheet) in combination with one or more operational factors (e.g. shadowing, open cir- lited bypass diodes , reverse current flows). Physical stress during PV module transporta- in, heavy snow loads, a lightning strike, thermal cycling, and/or hot spots by partial cell adding during long-term PV system operation forces mechanical weak(ended) cell/connec- in parts to break. Burn marks occur for example when a reverse current flow causes heating at further localizes the current flow, leading to a thermal runaway effect and the associated arm mark.					
	Production	Installation	n 🔲	Opera	ation		
Impact	Burn marks on interconnections are often associated with power loss, but if redundant electical interconnections are provided, a failed solder bond may have negligible effect on the power output. If all solder bonds for one cell break, then the current flow in that string is completed blocked and an electric arc can result if the current cannot be bypassed by the bypass did and the system operates at high voltage. Performance, reliability and safety are likely to severely compromised. Such an arc can cause a fire if there happen to be flammable mate around. If there is a question about whether the existence of the burn mark requires replacement of the module, an infrared image under illuminated and/or partially shaded conditions quickly identify whether the area is continuing to be hot and/or whether current flow h stopped in that part of the circuit. Temperature difference between neighbouring cells sho not be over 30 K. At this stage safety risk may still be not so high because the temperature this hot spot cell does not increase to more than around 100 °C. Also edge isolation fau on the solar cell level are under normal conditions not problematic, but when the bypass dic is in open-circuit, the current is driven in reverse through the shunts of the solar cells and bu the encapsulation.						
	Safety:	m	Performance:	1234	5		
Mitigation	Corrective actions	Preventive (recomme	e actions ended)	Preve (optic	entive actions nal)		
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.Visual inspection before in- stallation, commissioning of system with IRT.Regular system						

EXAMPLES (page1) PV	FS 1-7vs.01		
Examples 1-3	5		
Burn mark at the backsheet with cracked backsheet [Sinclair17]. Burn marks at the backsheet due to heating along a busbar [Könt- ges14]. Burn mark as the backsheet due to heating along a busbar [Könt- damage) [Kör	Burn mark associated with over- heating along the metallic inter- connection (without back-sheet damage) [Köntges14].		
Severity f m<			
Examples 4-6	caused by defect		
cracked cells) [Köntges14]. [Köntges14]. [Köntges14].	in the junc. box		
Severity f e m -3 4 5 f e m	→ <mark>3 4 5</mark>		
Examples 7-9 Burn mark with broken glass caused by poor bussing ribbon soldering [Yang19]. (see also	due to intrinsic used by error in g process		
Severity f e m 123 f e m			

Component Defect	Module Glass breakage				PVFS 1-8 vs.02			
Appearance	Glass is cracked locally or ov depending on the type of glass tempered glass will shatter i pieces. Heat-strengthened gl glass/glass modules are mo strengthened glass.	Glass is cracked locally or over the full area of the module. Glass breakage looks different depending on the type of glass and the origin of the glass breakage. Thermally toughened or tempered glass will shatter into small pieces, whereas annealed glass breaks into larger pieces. Heat-strengthened glass stays in between. Cracks occurring on the rear glass of glass/glass modules are more difficult to see by eye especially in the case of thin heat-strengthened glass.						
Detection	VI, (IRT)							
Origin	Glass breakages of the front g other extreme mechanical str mounting or internal stress du Annealed glass can break du cess or cleaning of the modul frameless PV modules and glasses with a thickness of 2 n to the fact that thin glass cann resistance against stress, imp on the rear glass. The origin is ration of the cutting edges or t the planning and installation st module, e.g. sharp edges, (b) number of the clamps on the r manual. The second origin w screws during the mounting p planarity. The glass of some F ring during transportation or h stresses on the glass edge. S mals climbing on the modules	plass can be ress onto t ue to high t e to therma es. A relativ glass/glass nm to 1.6 m ot be fully to acts and so s not fully u he drilling of tage failure tage failure too short nodule not which induc hase or tor V modules andling. An Sometimes	e caused by hear he module fram temperatures ori al gradients or sta- vely frequent fail modules. In pa- im, are more sen empered like 3 n cratches. Very of nderstood. In so of the holes for th occurs due to eit and too narrow being chosen in es glass breaka sion of the modu may also break other reason for vandalism or dai opping stones or	vy impacts su e due to ex- ginating from ress induced ure in the fie articular bifac- sitive to glass then the crack me cases the e connection ther (a) poor clamps or (c accordance v ge could be ule, not respe- due to vibrati glass breaka mages by an other objects	uch as hail or stones or ternal stresses or bad a hot-spots or arcing . by the lamination pro- ld is glass breakage of cial modules with thin s breakage. This is due s, reducing the surface king of thin glass starts e origin is in the prepa- to the junction box. At clamp geometry for the) the positions, kind or with the manufacturer's excessively tightened ecting requirements for ions and shocks occur- age comes from impact imals occurs (e.g. ani- s from the sky).			
	Production	Installatio	n 📃	Operat	ion 🔲			
Impact	Module mechanical integrity is age leads to loss of performan penetration of oxygen and wa usually also breaks the cells r spots and arcs. Mechanical and the modules is no longer guan verter shutdown can occur. So heating of the module and po- lead to current and power redu	grity is compromised when the glass is broken. Over time glass break- rformance due to cell and electrical circuit corrosion caused by the and water vapour into the PV module. Shattering of tempered glass cells reducing the power of the module and increasing the risk of hot ical and electrical safety is thus compromised. Firstly, the insulation of r guaranteed, in particular in wet conditions and ground fault and in- cur. Secondly, glass breakage causes hot spots, which lead to over- and possible fire injection. A module with a completely broken glass er reductions in the whole string.						
	Safety:	e m	Performance:	1234	5			
Mitigation	Corrective actions	Preventiv (recomme	e actions ended)	Preven (option	tive actions al)			
	All damaged modules have to be replaced. In case of known origin, the error must be rectified. Regular visual in- spections are recommended in case of unknown causes not related to external impact.	Adequate transport proce- dures, installation and clean- must al in- nded loads use of certified mod- uses pact.						

EXAMPLES	(page1)				PVF	S 1-8 vs.02
Examples 1-3						
	Chipped glass [Packard12].	at the corner	Glass breakage interconnect ribb manufacturing p courtesy of SUPS	along the string ons due to weak process [By the SI PVLab].	Glass breakag glass induced b the courtesy of	ge of tempered by a hot-spot [By SUPSI PVLab].
Severity	— —	1	f m e m	-23	f e m	⊢ <u>+</u> 345
Examples 4-6						
	Glass breakage tight screws [K also PVFS 3-1)	caused by too öntges14]. (see	Glass breakage poor clamp desig	caused due to n [Köntges14].	Glass breakage poor clamp des (see also PVFS	e caused due to sign [Köntges17]. 3-1)
Severity	f m e m		f m e m	-234-	f m e m	
Examples 7-9	Glass breakage	e through high	Glass breakage	e of tempered	Breakage of	tempered glass
	temperature gradient and not glass induced by burn tempered glass [Köntges14]. [Köntges17]. (see also PVF and PVFS 1-9)			by burn mark e also PVFS 1-7	[Köntges17].	
Severity	f e m	<mark>⊢ 1 3 4 5</mark>	f e m	<u>⊢</u>	f e m	<u>⊢</u> 4 5

Т

EXAMPLE	S (page2)				PVF	S 1-8vs.02
Examples 10-12						
	Direct lightning ges16].	stroke [Könt-	Impact damage heavy object [By SUPSI PVLab].	e caused by a / the courtesy of	Hail damage [B <u>y</u> SUPSI PVLab].	y the courtesy of
Severity	f e m	·····	f e m	<u> </u>	f e m	F
Examples 13-15		K				
	Broken thin (<= glass. Long (ma lines without sp with no clear cra	2 mm) rear ny dcm) crack litting the crack ack start.	Glass breakage of a bifacial mod insufficient spaci modules (therma module frame is	on the rear side ule caused by ng between Il expansion of not considered).		
Severity	f e m	+2		⊢231		

Component	Module					PVFS 1-9vs.02	
Delect							
Appearance	Weak or broken interconnection of cells or substrings is not easy to be seen by the naked eye. The failure can be identified as dark region in the electroluminescence image where the failed interconnect would not be collecting carriers and result in a hot spot in the infrared image. In a progressed stage burn marks and glass breakage can occur. A short-circuited cell is also difficult to recognize with naked eye, while it appears as dark cell in the EL image. For parallel connected substrings the substring with short-circuited cell ap- pears brighter in an EL image and slightly warmer in IRT than other substrings in parallel connection.						
Detection	EL, IRT, STM, (VI)						
Origin	Typically, it is caused by the manufacturing process (e.g. poor soldering, misplacement of ribbons, too intense deformation of the ribbon kink, narrow distance between the cells, incorrect conductive glue application) followed by thermomechanical stress or repetitive wind load caused by the outdoor operating environment. Electrochemical corrosion can be another cause for the degradation of interconnections. Short circuited cell occurs when the interconnection ribbon or conductive glue connects the front and rear sides of a cell.						
	Production		Installatio	n 🗌	Operat	ion	
Impact	Poor interconnections (soldering bonds) lead to an increase of contact resistance, higher power dissipation and localized heating. Broken connections are often associated with power loss, but if redundant electrical interconnections are available, a failed connection may have negligible effect on the power output. Safety risk may be not so high until the temperature of the induced hot spot does not increase to more than around 100 °C. If all busbars of a cell are interrupted, then the current flow in that string is completely blocked and an electric arc can result if the current is not bypassed by the bypass diode and the system operates at high voltage. The safety risk depends on the durability of this bypass diode. A bypass diode, which is continuously active over days can be damaged and pass into open-circuit or short circuit state. As a result of an open circuited diode , the current goes through the failed cell string and generates heat at the disconnected position. Very high temperatures or an electric arc may cause fire, expose the electrical conducting parts to the user and destroy the mechanical integrity of the module. For series connected cells in a module only the power of the short-circuited cell(s) is/are lost. The impact of short-circuited cells in a parallel connected substring. In most cases there is no safety issue for short-circuited cells.						
	Safety:	f e m f		Performance:	1234	5	
Mitigation	Corrective actions		Preventive actions (recommended)		Preven (option	Preventive actions (optional)	
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.		Check pro tion accor Commiss with IRT.	oof of factory insp ding to IEC 6294 ioning of sys	bec- Pre-shi samplir tem site. Regula	Pre-shipment inspection or sampling EL inspection when modules arrive the installation site. Regular system inspections.	

- I
| EXAMPLES | (page1) | | | | PV | F S 1-9 vs.02 |
|-----------------|--|--|---|---|-----------------------------------|--------------------------------------|
| Examples
1-3 | | | X X
Disconfiected
detected | d positions
by STD | | |
| | Zoom of a brok
nect [Yang19]. | en cell intercon- | EL image of a me
with disconnect
ribbons [Köntges | odule with 3 cells
ed inter-connect
s14]. | Disconnected
with delaminati | cell interconnect
on [Köntges17]. |
| Severity | f e | ⊢234 ⊣ | fe | ⊢234⊣ | f e | |
| Examples
4-6 | Dislocation of | interconnection | Poor soldering | of string inter- | Mirco arc which | n occur if the con- |
| | | 7]. | broken glass [Ya
PVFS 1-7 and P | ang19]. (see also
VFS 1-8) | connect has ar
tact [Köntges14 | insufficient con- |
| Severity | 🛑 🚺 🕑 | 1 2 | f e m | ⊢+345 | f e | ⊢234⊣ |
| Examples
7-9 | IRT and EL ima
cuited shingled or
rectly applied c
sive [By the co
Wedig, pvContro | age of short cir-
cells due to incor-
onductive adhe-
ourtesy of Remy
ol]. | | | | |
| Severity | | H <mark>2</mark> 1 | | | | |

Component	Module						PVFS 1-10 vs.02
Defect	Potentia	I induced degrada	tion (PID)			
Appearance	S (shunting) and p (polarization) -type PID are not optically visible; however advanced stages of c (corrosion) or d (delamination) -type PID are visible. PID causes a progressive power loss and some PID modes may also manifest in discoloration and hot spots over time. PID-s can be detected through IRT imaging of operational PV modules in direct sunlight or in the laboratory, where PID appears as warmer cells close to the bottom frame or patchwork patterns, and is more significant in PV modules positioned close to one of the poles of the PV string. PID-s is also detectable by EL imaging, especially under low current bias (1/10 rated current), where the affected cells closer to the module frame show reduced luminescence. PID-s causes a decreased shunt resistance, FF, and V_{oc} in the IV curve, and is more noticeable under low light. PID-p shows a decrease of luminescence and no low current bias dependency, being harder to detect with EL images. IV measurements can be used to confirm the presence of PID in combination with IRT or EL. PID-p causes a decrease in I_{sc} and V_{oc} , typically originating on the rear side of p-type-base cell modules (PERC) and the front of those using n-type cells (PERT, TOPCon, IBC).						
Detection	IV, EL, IR	RT, (MON)					
Origin	PID is a degradation mode induced by a high voltage stress with respect to ground. The oc- currence of this failure depends on the magnitude of the voltage (number of serially connected PV modules per string) and the polarity of the electrical field build-up between the fram- ing/glass surface and the solar cells. The last depends on the inverter typology (transformer), the grounding concept, and cell technology. Modules with p-type cells degrade in negative polarity strings whereas modules with n-type cells in strings with positive polarity. The degra- dation is accelerated by elevated temperature, humidity, rain (surface wetting), condensation and soiling. PID-p is caused by the build-up of surface charges on the cells, which results in a current loss. PID-s is induced by leakage currents coming from the displacement of Na+ ions from the module's front or rear glass and through the encapsulation material. The flow of Na+ ions creates shunts in the cells. For both PID types, module and cell design has a fundamenta influence if and how much a module is affected by PID. There are modules on the market that					pect to ground. The oc- ber of serially connected -up between the fram- typology (transformer), ills degrade in negative tive polarity. The degra- wetting), condensation cells, which results in a splacement of Na+ ions laterial. The flow of Na+ esign has a fundamental dules on the market that	
	Productic	n	Installatio	n 🔲		Opera	tion
Impact	Yield losses of 20 percent and more within 1 year were observed in the past. Due to its cata strophic performance loss, PID bears a high economic risk. PID-s is to some extent a reverse ble polarization type and can therefore be partially reversed or stopped when detected in time. However, if detected too late, it can lead to irreversible power loss. The PID-p effect cause instead a significant reduction of I _{sc} , V _{oc} and power. PID-p is thought to be fully regenerate by reversing the polarity of the bias potential. In some cases, material degradation of the modules through corrosion and delamination occurs associated with excessive leakage currer Up to now, safety problems directly related to the PID have not been reported, but hot spon and corrosion caused by the strong cell mismatch may cause such safety issues.						he past. Due to its cata- b some extent a reversi- d when detected in time. The PID-p effect causes to be fully regenerated degradation of the mod- essive leakage current. reported, but hot spots fety issues.
	Safety:			Performance:	⊢2	3 4	5
Mitigation	Correctiv	e actions	Preventiv mended)	e actions (recom)-	Prever (optior	ntive actions nal)
	Recovery is possibl ules in no strings, a voltage. M cannot be	of early-stage PID e by placing mod- on-sensitive polarity pplying a reverse More advanced PID e fully recovered.	arly-stage PID placing mod- nsitive polarity ng a reverse advanced PID recovered. Modules successfully tested per IEC 62804-1 are less prone to PID. Optional for PID-resistant modules. Placing the modules in PID-sensitive DC volt strings with one termi grounded using an in- with a transformer or ers with anti-PID features				g the modules in non- ensitive DC voltage with one terminal ded using an inverter transformer or invert- th anti-PID features.

EXAMPLES	6 (page1)		P	VFS 1-10vs.02
Examples 1-2		55 •		22
	Strings with PID-s, detecte ges14].	d with IR thermography [Könt-	Dark IR thermograp affected by PID-s [k	hy at Isc for a module Köntges14].
Severity		⊢ <mark>2345</mark>		⊢ 2345
Examples 3-4	PV-	PV+		
	Strings with PID-s, detected	I with EL imaging [Köntges14].	Electroluminescence for a module affect ges14].	e image made at Isc cted by PID-s [Könt-
Severity	•	⊢2345		⊢2345
Examples 5-6	e e e e e e e e e e e e e e	1'000 W/m² MPP (STC): 22.2 W 200 W/m² MPP (200): 1.6 W (-63.6%) 10 20 30 40 50 Voltage [V]		
	PID-s affected module with 1.5 x I_{sc} , right: I-V curve of 200 W/m ² [Herrmann21].	power loss of 89%, left: EL at the same module at 1000 and	PID-s affected mod 14%. top: EL at 1.5 same module at 0.2	ule with power loss of x I_{sc} . bottom: EL of the 2 x I_{sc} [Herrmann21].
Severity				⊢ <u>+</u> ,3 <u>-</u> +,1

Т

Component Defect	Module Metallisation discolouration	on/corros	ion		PVFS 1-11 vs.01			
Appearance	The discolouration and/or correction visible as a light yellow to dark on the material combinations of products that may appear power tinge. The defect occurs typic cell/string interconnect ribbons lamination and discolouratio certain circumstances corrosio of the EL images can here high ule and the gaps between the the edges.	e discolouration and/or corrosion of the cell metallisation and the interconnections is getting ble as a light yellow to dark brown to black discolouration of the electrical parts. Depending the material combinations corrosion is furthermore noticeable by the presence of galvanic ducts that may appear powdery, white, light gray, and/or have a yellow, blue, or green ge. The defect occurs typically at the solder bonds, on the cell gridlines/fingers or the l/string interconnect ribbons. It is very often observed together with other failures like de-nination and discolouration of the encapsulant and sometimes with burn marks . Under tain circumstances corrosion is more visible near cell edges. Dark areas at the cell borders the EL images can here highlight the diffusion of moisture through the rear side of the modand the gaps between the cells and the subsequent front side cell corrosion starting from edges.						
Detection	VI, (EL, IV)							
Origin	The corrosion/oxidation of the metallisation is caused by the presence of moisture and acidity in the encapsulant, as e.g. acetic acid, a degradation product of the mostly used encapsulant EVA or remaining crosslinker (peroxides). Acetic acid has a corrosive effect on the cell metal- lisation and the cell interconnect. The ingress of moisture caused by an ongoing delamination process leads together with the oxygen to a further acceleration of the corrosion. Corrosion can be caused by a poor manufacturing process (e.g residual crosslinker due to a too short lamination process; imperfections in cell soldering) or the choice of poor materials (low corro- sion resistance of tin-based coating of copper ribbons, high water permeability of back sheet and/or encapsulant materials). Environmental factors can accelerate the corrosion (e.g am- monia, salt, humidity, temperature). For these reasons, corrosion is more frequent and severe under hot and humid climates or in agriculture or maritime environments. Discolouration can be also related to non-corrosive processes like a discolouration due to light-sensitive solder							
	Production	Installatio	n 🗌	Oper	ration			
Impact	The metallisation, and/or interce therefore losses in module per metallisation discolouration with issue. Locally increased series significant, it can trigger the by	connect, co formance. hout corros resistance pass diode	prrosion leads to The power loss sion. The defect of leads to current and cause furth	an increas is less pror does not au mismatch. her power lo	sed series resistance and nounced for modules with utomatically pose a safety If the mismatch is getting oss of the PV module.			
Mitianation		Dreventiv						
Mitigation		(recomme	e actions ended)	Prev (option	Preventive actions (optional)			
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.	Check validity of IEC 61215 certification and BOM.		215 Regu	ular system inspections.			

EXAMPLES	(page1)					PVFS 1-1	1 vs.01
Examples 1-3							
	Discolouration or to light-sens on the ribbon.	due to corrosion itive flux residues	Discolouration of on the ribbon [E SUPSI PVLab].	due to corrosion By the courtesy of	String [Köntg	interconnect es17]	corrosion.
Severity		1				1	2
Examples 4-6							
	Cell intercor [Köntges17].	nnect corrosion	Modules with lig dation after 5 ye [Yang19].	ght Ag finger oxi- ears in the field	Severe burn r busba modul	e oxidation/cor marks on the rs, and interc es after 25 year	rosion and Ag fingers, onnects of rs [Yang19].
Severity		1 2		H2	e	H_2	34-1
Examples 7-9	Corrosion see and black disc	n as red, green colouration in the	Busbar corrosid	on and delamina- e [By the courtesy	Glass/ lamina	glass module stion and subs	showing de-
Severity				bj.			3 4 5

Component Defect	Module Glass corrosion or abrasion PVFS 1-12vs.01						
Appearance	The degradation of the glass front layer is getting visible as a homogenous or heterogeneous change in colour and transparency of the glass. The affected glass surface can appear hazy or milky and in some cases also rougher compared to the non-degraded module/module area. Increased susceptibility to soling could be observed.						
Detection	VI, (IV)						
Origin	To optimise the efficiency and appearance of a PV module most manufacturers apply some anti-reflective coatings (ARC), anti-soiling coatings (ASC) or multilayer coatings on the front of their modules. 1-3% more power can be obtained by these techniques respect to module with uncoated glass. Corrosion or abrasion of these layers can however, reduce or vanish the effectiveness of these coatings. Glass corrosion is caused by atmospheric humidity in combination with gases or particles present in the atmosphere (e.g. pollutants, salt, ammonia) and the glass. It happens for example when water (dew) dissolves some of the sodium ions from the top of the soda lime glass, leading to the production of an alkali base that can then corrode the glass silicate. Glass abrasion or corrosion can be also caused by inappropriate cleaning techniques (mechanical removal techniques, inappropriate cleaning agents) which damage or removes the coatings. Abrasion occurs mostly in the desert, due to the combination of wind, sand and dust which causes abrasion and frosting of the glass surface.						
	Production	Installatio	n 🗌	Oper	ation		
Impact	Corrosion or abrasion of the gl a power loss. The power loss i except in the case where the s can be observed. Operating ar	ass front la s generally coiling susc nd Mainten	ayer lowers the t limited to a few ceptibility is signi ance (O&M) cos	percent ar ficantly incl ts can be a	n of the glass, leading to ad is saturating over time reased and larger losses ffected by this.		
	Safety:		Performance:	⊢234			
Mitigation	Corrective actions	Preventiv (recomme	e actions ended)	Preve (optic	entive actions onal)		
	Modules with a direct safety risk or a severity of 5 should be replaced. Depends on the level of performance loss. For extreme environments (e.g. near to mines, cement facto- ries), evaluate cost-effective- ness of replacing modules with lost yield.	Check validity of IEC 61215 certification and BOM, appro- priate component selection in function of intended applica- tion.					

EXAMPLES	(page1)		PVFS 1-12 vs.01
Examples 1-3			
	Zoom of module with hazy glass (homogenous discoloration) due to surface corrosion [India13].	Zoom of module with hazy glass (heterogenous discoloration) due to surface corrosion [Petter11].	Hazy glass due to glass corro- sion close to frame [India18].
Severity			
Examples 4-5			
	Glass corrosion on the front of a damp heat 90/90 testing [Walsh2	mono-Si back-contact module after 20].	Glass corrosion [Köntges16].
Severity		<u>⊢</u>	

Component Defect	Module Defect or detached junction box PVFS 1-13vs.01							
Appearance	The junction box housing and lid appears either defect (weathered, brittle, cracked, warped, melted or burned) and/or detached (open or loose lid, shifted or detached junction box from backsheet). The sealant/adhesive material with which the junction box is attached to the backsheet can be weathered or appear as yellowed. The sealing components/material around the wire entrance or the lid can be damaged (squeezed, broken, brittle) or completely missing.							
Detection	VI							
Origin	Junction box detachment results from poor fixing of the junction box to the backsheet or use of low quality adhesive. Acrylic or PE Foam tapes were used as junction box attachment ma- terial in early years, but they frequently loss stickiness at low temperature and result in de- tachment. Use of inadequate IP rating junction box may cause water intrusion and subsequent failure. Opened or badly closed j-boxes may due to poor manufacturing process or air pres- sure caused by high temperature for boxes with no exhaust path. Delamination near a junction box can cause it to become loose. Improper handling or mounting of the modules can be also the cause of damages the j-box, like pulling modules up on the cables before mounting, or missing cable fixing or usage of too short cabling to interconnect modules to a string, causing frequent or permanent mechanical stress on the j-boxes.							
	Production	Installatio	on 📃	Opera	ation			
Impact	A defect or detached junction nections, leading to performan quent initiation of fire. Furthern contacts within the junction box electrical components.	box is caus nce losses more, a loc x, with the l	sing humidity ingress and increasing risk o ose junction box is pu risk of breaking them	with cc of elect itting m and ex	prrosion of the intercon- trical arcing and subse- nechanical stress on the posing persons to active			
	Safety:		Performance:		1 2 3 4 5			
Mitigation	Corrective actions	Preventiv (recomm	re actions nended)	Preve (optio	entive actions nal)			
	Modules with a direct safety risk or a severity of 5 should be replaced or repaired. Regular inspections should be done to monitor the status of the not replaced modules.	alidity of IEC 61215 on and BOM. ault detection by in- other devices at all	Regul Install tool.	lar system inspections. lation of arc detection				

EXAMPLES	(page1)					PVFS	5 1-13 vs.01
Examples 1-3	6						
	Poorly bonded the backsheet	l junction box on [Köntges14].	Open junction [Yang19].	box in the field	Detach backsh SUPSI	ed junc eet [By PVLab].	tion box from the courtesy of
Severity	f e	1		12345			12345
Examples 4-5	Loft: Minaing i				Minesing		e atroia, raliua, af
	Right: Good jui	nction box lid se nction box sealing	aling with corro [India13].	sion of contacts.	module inlet [Si	cables, inclair17]	improper cable
Severity	f e		12345				12345
Examples 6-7	Melted junction tesy of TUV Rh	box [By the cour- neinland].	Burned junction corroded cont	h box caused by acts within the			
			junction box [B TUV Rheinland	y the courtesy of].			1
Severity		·-····5	f e	⊢−−−−−−−5			

Component Defect	Module Junction box interconnect	tion failur	e		PVFS 1-14 vs.02		
Appearance	Not connected, broken, burned, corroded or short circuited parts within the junction box. It can involve solder joints, wires, bypass diodes or tabbing ribbons. The interconnection failure itself could be hidden by the potting material in the junction box and be visible only by removing the potting material. The material can appear as degraded (yellowed, browned, burned or bubbled) due to the heat or arcing occurring in the junction box.						
Detection	BYT, (IRT, EL, VI, IV, VOC)						
Origin	Bad contacts in the junction box can be caused by cold solder joints, thermo-mechanical caused changes in contacts, wrong assembly or moisture ingress. Contacts are either soldered, screwed or inserted (mechanical spring clamping). Bad soldering contacts are caused by low soldering temperature (cold solder joint) or chemical residuals of the previous production process on the solder joints. Bad mechanical contacts are caused by loose clamping or screws. Mechanical contacts can get loose due to the thermal cycling of day and night and seasonal changes. Moisture ingress in bad or damaged junction boxes (e.g. adhesion loss, brittle, cracked, missing seal at wire entrance or junction box housing) leads to corrosion of the contacts. Delamination near the junction box can cause it to become loose, putting mechanical stress on the contacts within the junction box and breaking them						
	Production	Installatio	n 🗌	Opera	ation		
Impact	Depending on the position of the circuit or arcing) the impact on can moreover result in discolor and around the junction box and cause a short circuit or internation camera (hot spot). Furthermore module as a diode failure if the bypass diode protection). In a to significant power losses or lamodules or strings. The means stress conditions. Interconnect triate fire.	the bad consafety and ouration and d to glass and to gl	ntact and its character performance can be with ad burn marks in the breakage . In the work ithin the j-box. The he ction failure could lead ion to a bypass diode the visual defects, inte de resilience, which c an be affected by ch e particularly dangero	er (resi very dif encpa st-case eat car ad to e e is los erconn an bot anging bus bee	stive, open circuit, short ferent. Resistive heating sulant/backsheet behind interconnection failures be detected with an IR equal impacts to the PV st (missing/insufficient ect failures can also lead h be detected by BYT of g mechanical or thermal cause the arcing can ini-		
	Safety:		Performance:	(1 2 3 4 5		
Mitigation	Corrective actions	ective actions Preventive actions (recommended)		Preve (optio	entive actions nal)		
	Modules with a direct safety risk or a severity of 5 should be replaced, especially if the modules are installed on buildings. Regular inspections should be done to monitor the status of the not replaced modules.	Request a proof of IEC 61730-2:2023 Annex A5 a) or b) bypass diode functionality test in production. Commissioning of system with IRT or BYT. Compare VOC of parallel strings.		ty Request a proof of IEC 61730-2:2023 Annex A5 a) or b) bypass diode functionality test in production. Commis- sioning of system with IRT or BYT. Compare VOC of paral- ed lel strings.		ng the module bypass di- with a mobile test centre to installation. Regular ispections. Installation of etection tool.	

EXAMPLES	(page1)					PVFS	5 1-14 vs.01
Examples 1-3		1000					
	Junction box w [Köntges14].	vith poor wiring	Detached tabbir bad soldering [K	ng ribbon due to öntges14].	Corros soaking [Yang1	ion failure g of the I 9].	due to water P65 rated Jbox
Severity	-	·-···	<u>_</u>	<u> </u>	f		⊢ <u>2345</u>
Examples 4-6		2160					
	Jbox failure due connection [Yan	e to poor electric g19].	Evidence of loos tion inside Jbox pottant [Yang19]	e screw connec- with browning of I.	Cold s sing rit tion te browni	oldering obon to th erminal p ng of potta	of module bus- le Jbox connec- lad with minor ant [Yang19].
Severity		<mark>⊢3 4 5</mark>	f	⊢2345			−2345
Examples 7-9							302.4
	Overheating due interconnect lea coloration and be and back side [Y	to the poor Jbox ding to light dis- urn mark on front 'ang19].	Overheating due interconnect le mark and g [Yang19].	to the poor Jbox ading to burn lass breakage	IR imag to loos side [Y	ging of a h se electric ang19].	otspot Jbox due connection in-
Severity		⊢ <u>+</u> 345	f e m	⊢ <u>+</u> 345		e m	

EXAMPLES	(page2)		PVFS 1-14 vs.02
Example 10	Substring (SS) SS very hot when shaded Cold solder joint	String current Cross-sectional view of module laminate	
	A cold solder joint after the diode in any juresult in a safety failure that is undetectable with night EL inspection while applying strin courtesy of Ternus & Diehl GbR].	Inction box (either outer by IRT. The not connecting wise reverse voltage v	or inner) [Köntges25] can ted bypass diode is visible with 3%-5% of rated I _{sc} [by
Severity			
Example 11	JB warm	••• String current ross-sectional view f module laminate	
	A cold solder joint before the diode in the detectable by IRT. However, if the inner jun sub-string to operate in open circuit [Köntge	outer junction box cause action box is affected, it d es25].	es a 1/3 power loss and is oes not cause the module
Severity	f e m	<u>, , , , , , , , , , , , , , , , , , , </u>	
Example 12	Cold solder joint	ring current Cross-sectional view of module laminate alle string in OC	
	Cold solder joints before and after the diod which is detectable by IRT. The module lo box is impacted, the module continues to b	e of an outer junction bo ocation remains unidentif ehave as intact [Köntges	x results in full string loss, iable. If the inner junction s25].
Severity	f e m	<u>, , , , , , , , , , , , , , , , , , , </u>	

Component Defect	Module Missing o	or insufficient byp	bass diod	e protection		PVI	FS 1-15vs.02
Appearance	Missing, dis	sconnected, inverte	d, damage	d, open circuited	l or short	circuited	bypass diode.
Detection	BYT, (IV, IF	RT, EL, VI, VOC)					
Origin	Bypass dio voltages du the diodes working co partial shac PV module stress. Two Short circu box, it is m lightning str ing, it is no not resisting than open of	des fail either beca le to lightning strikes have a certain ppm nstantly at high tem ding is frequently pro- s, but they are very o main failure modes it condition occurs o ounted the wrong v rikes or static electri t properly connected g to a continuous cu circuit failures. How	use they a s or other h of failure r operatures esent. Typi y susceptib s are obser when the b vay arounc city. Open d, a strong rrent flow. S ever, open	re undersized of igh voltage ever ate, that is the n this failure rate cally, Schottky of le to static high ved with bypass bypass diode is for when it has circuit condition current damage Short circuit failures a	r because nts. In add nature of t increase liodes are voltage c diodes: o physically been exp occurs w ed the dic res are re re norma	e they are dition to the comp s. This case used as lischarges open circ y shorten bosed to hen a dio bde, or it i eported to lly not de	e exposed to high nese two reasons, onent. For diodes an be the case, if bypass diodes in s and mechanical uit or short circuit. ed in the junction high voltages like de is simply miss- is undersized and be more frequent tected.
	Production		Installatio	n 🗌	Ор	eration	
Impact	Bypass dio lowed cell r shading on the bypass cell and ma fire. This fa circuited by of the mod during open failures sor the junction leakage cu	des are used to ave everse bias voltage the PV module. In t diode and a cell ca ay evolve hotspots illure is difficult to b pass diode will con ule. A short-circuite ration. Also it causes netimes cause the jun rrent may follow.	oid the rev of the sola he case of in be rever that may c e detected atinuously I ed module s mismatch junction box c	erse biasing of s r cells and to red an open circuite sed with a highe cause browning until the module ower the voltage leads to inhomo n losses in the ca or backsheet are	single sol uce the p d diode n er voltage , burn m e is expo e and the ogeneous ase of pa even burn burnt thr	ar cells h ower loss o current than it is a rks or, i sed to the reby the s heating rallel strin t due to l ough, the	igher than the al- s caused by partial is flowing through a designed for the in the worst case, ese risks. A short power production of individual cells ngs. Bypass diode heat dissipated in safety issues like
	Safety:			Performance:	123	4 5	
Mitigation	Corrective	actions	Preventiv (recomme	e actions ended)	Pre (op	eventive a tional)	actions
	Modules w risk or a se be replac the modu on buildin spections s monitor the replaced m	with a direct safety everity of 5 should ed, especially if les are installed ngs. Regular in- should be done to e status of the not odules.	Request 61730-2:2 b) bypass test in p sioning of BYT. Con lel strings	a proof of 2023 Annex A5 a s diode function roduction. Com f system with IR npare VOC of pa	IEC Tes a) or ode ality pric mis- IRT T or arc aral-	sting the r es with a or to ins inspection detection	module bypass di- mobile test centre tallation. Regular ons. Installation of n tool.

EXAMPLE	S (page1)		PVFS 1-15 vs.02
Example 1	Diode SC	String current	
	A short circuited bypass diode causeS a 1/3 pow	ver loss and i	is detectable by IRT [Köntges25].
Severity		5	
Example 2	Diode OC Outer JB Inner JB Outer JB Outer JB	String current	
	An open circuited bypass diode causes a safety	failure that is	undetectable by IRT [Köntges25].
Severity		12	

Component	Module					
Defect	Not confor	m power rating				PVF5 1-10vs.01
Appearance	The STC out imum namep	tput power of a bra plate output power	and new mo is not clea	odule is below a rly specified by t	specified to	olerance limit or the min- cturer.
Detection	IV, (MON)					
Origin	Deviations of pends on the ment uncerta applied in pr product varia sources of ur ature, calibra equipment, c has to take in 17). This ment to be within performing the have to be s specific test pending on the verification of to be conform	f the measured por e product variability ainty. The quality of roduction for the re- ability. The deviation ncertainty, for exar- ation of the solar sin connectors and cat nto account any te- ans that after a first the rated power to he STC performan- stabilised according requirements are of he technology, a m f power ratings. Fo m to the IEC61215	ower of a s y, manufact of cells (e.g eduction o ions in the mulation, r oles. Accorr ochnology r st exposure olerance. T ince test ha g the proc described inaximum a or c-Si modi standard,	single module re sturing quality, the LID susceptibili f mismatch loss e measurement nvironment temp naintenance of t related initial deg e to light the out The measurement is therefore to b edure described in IEC 61215-1- llowable measure ules it is specified when following of	spect to the le labelling ty) together es, has a s in the fact perature, m he reference national sta gradation e put power of the uncertain e taken inte 1:2021 to li rement unc d as 3%. A criterion (ga	e name plate power de- policy and the measure- with the binning method significant impact on the ory comes from several easured module temper- te module, measurement indards, the power rating ffects (for c-Si see FS 1- of a new module has still hty of the test laboratory o account. The modules 215-2:2021. Technology EC 61215-1-4:2021. De- ertainty is defined for the PV module is considered ate 1) is fulfilled:
		P _{max} (Lab) · ($\left(1 + \frac{\frac{1.65}{2} r }{1}\right)$	$\left(\frac{\mathbf{n}_1 [\%]}{00}\right) \ge \mathbf{P}_{\max}($	$(NP) \cdot \left(1 - \frac{1}{2}\right)$	$\frac{ t_1 [\%]}{100}$
	P _{max} (Lab): mea P _{max} (NP): mir	asured maximum STC nimum rated nameplat	power of eacher power of eacher	ch module in stabiliz ach module without	ed condition rated product	ion tolerances
	m ₁ : me	easurement uncertainty	in % of labo	ratory for P _{max} (expa	anded combin	ed uncertainty (k = 2)
	t ₁ : ma	anufacturer's rated lowe	er production	tolerance in % for <i>I</i>	P _{max}	
	The minimum nameplate of the nameplat stated on the value on the uncertainty c	n nameplate powe r data sheet value te value, the modu nameplate or the components are sp	er rating, P es. If the P, ile can be datasheet, ta sheet (f ecified) the	$m_{max}(NP)$ and tole $m_{max}(NP)$ derived considered to be then $t_1 = 0$. If the or example, if m e smallest numb	rance t ₁ ha from the da e not confor tolerance nultiple tole er shall be	is to be derived from the atasheet is different from m. If the tolerance is not is not reduced to a single rances or measurement utilized.
	Production		Installatio	n 🗌	Oper	ation
Impact	A non-confor safety issue, incorrect esti tions and inv	rm STC power rati but it has a negat imation of the insta restor expectations	ng is not a ive impact illed STC p s.	real module fai on the lifetime e ower has a diree	lure, as it c energy yielc ct impact or	auses no degradation or I and financial return. An n the energy yield predic-
	Safety:			Performance:	123	<u> </u>
Mitigation	Corrective ac	ctions	Preventive (recomme	e actions ended)	Preve (optic	entive actions onal)
	Confirm un through an a laboratory. (power.	nderperformance ccredited PV test Claim for missing	Verify po data she chase mo manufacto	wer warranties et conformity, odules from true urers.	and Indep pur- ing of sted and/o ture ment	bendent third party test- f samples at factory gate or arrival on site. Signa- of a contractual agree- s.

EXAMPLES (page1)

PVFS 1-16vs.01

Examples Product Z series Product Z300W 1 Electrical Data at STC 300 W Maximum power (Pmax) $\begin{array}{|c|c|c|c|c|} \hline Peak \text{ power watts } \pm 3 \ \% \ - \ P_{\max}(W) \\ \hline Maximum \text{ power voltage } - \ V_{\min}(V) \\ \hline \end{array}$ 300 305 310 ±3 % 37.2 37.5 Maximum power voltage (Vmp) 37 37 V P_{max} (NP) = 300 W; t_1 = 3 % V_{oc} (NP) = 45,9 V; t_2 = 5 % I_{sc} (NP) = 8,9 A; t_3 = 5 % a) Maximum power current (I_{mp}) (A) 8,2 8,27 Maximum power current (Imp) 8,1 8,1 A Open circuit voltage^a - V_{oc} (V) 45.9 45,9 45,9 Open circuit voltage^a (V_{oc}) 45,9 V Short circuit current^a - I_{sc} (A) 8.9 8.92 8.98 Short circuit current^a (I_{sc}) 8.9 A Module efficiency - $\eta_{\rm m}$ (%) 14,2 14,4 14 Maximum DC system voltage 1 000 V $a \pm 5 \% / -0 \%$ tolerance on I_{sc} and V_{oc} a +5 % / -0 % tolerance Product X series Electrical Data at STC Product X300W Maximum power (P_{max}) 296 to Peak power watts^a - P_{max} (W) 296 to 301 to 306 to P_{max} (NP) = 296 W; t_1 = 0 % V_{oc} (NP) = 45,9 V; t_2 = 4 % I_{sc} (NP) = 8,9 A; t_3 = 4 % 300 W 305 310 300 Maximum power voltage (Vmp) Maximum power voltage - V_{mp}(V) 37 V 37 37.2 37.5 b) Maximum power current (Imp) 8.1 A Maximum power current (Imp) (A) 8.1 8.2 8.27 Open circuit voltage^a - V_{oc} (V) 45,9 45,9 45,9 If t_1 is not specified, it is Open circuit voltage^a (V_{∞}) 45.9 V Short circuit current^a - I_{sc} (A) 8,9 8,92 8,98 taken to be 0. Short circuit current^a (I_{ac}) 8.9 A Maximum DC system voltage 1 000 V Module efficiency - $\eta_{\rm m}$ (%) 14 14,2 14,4 ^a ±4 % production tolerance ±4 % production tolerance Product Y series Product Y300W Electrical Data at STC Maximum power (P_{max}) 300 W Peak power watts - Pmax (W) 300 305 310 $_{ax}$ (NP) = 300 W; $t_1 = 0 \%$ $_{ax}$ (NP) = 45,9 V; $t_2 = 2 \%$ P., ±3 % / -0 -0 / +3 -0 / +3 -0 / +3 Power output tolerance (%) V_{oc} (NP) = 45,9 V; t_2 = 2 9 I_{sc} (NP) = 8,9 A; t_3 = 2 % Maximum power voltage (V_{mp}) 37 V Maximum power voltage - V (V) 37 37,2 37,5 c) Maximum power current (Imp) 8,1 A Maximum power current (I_{mp}) (A) 8.2 8.27 8.1 t₂ is not reduced to a single Open circuit voltage a,b (V) 45.9 V Open circuit voltage ^{a, b} - V_{oc} (V) 45,9 45,9 45,9 value. Thus, the smaller Short circuit current a,b (Isc) Short circuit current ^{a, b} - I_{sc} (A) 8.9 A 8.9 8,92 8,98 value is chosen. The same Maximum DC system voltage 1 000 V situation exists for t_3 . Module efficiency - η_m (%) 14 14,2 14,4 a ±2 % measurement uncertainty ^a ±2 % measurement uncertainty $^{\rm b}$ ±10 % tolerance on $I_{\rm sc}$ and $V_{\rm o}$ ^b ±10 % tolerance on I_{sc} and V_{oc} Product T series Product T300W Electrical Data at STC Maximum power (P 300 W Peak power watts^a - P_{max} (W) Power selection $(\pm 5 \text{ W})$ 300 310 Maximum power voltage (Vmp) 37 V Maximum power voltage - Vmp (V) 37 37.5 Fails to meet requirements d) 8,1 8,27 Maximum power current (Imp) Maximum power current (Imp) (A) 8,1 A of IEC 61215-1 5.2.2. Lower edge of power bin is Open circuit voltage (V_{α}) 45.9 V Open circuit voltage^a - V_{oc}(V) 45,9 45,9 295 W on nameplate, but Short circuit current (I 89A Short circuit current^a - I_{sc} (A) 8,9 8,98 is 300 W on datasheet. Maximum DC system voltage 1 000 V Module efficiency - $\eta_{\rm m}$ (%) 14 14.4 ± 3 % tolerance on $P_{\rm max}$, $I_{\rm sc}$, $V_{\rm oc}$ ^a ±3 % tolerance on P_{max} , I_{sc} , V_{oc} Example of a hypothetical conform (a-c) name plate and datasheet values with on the right the accord. IEC 61215-1:2021 derived rated values and tolerances in comparison to a hypothetical example of a not conform STC rating (d) [IEC 61215-1:2021]. NA Severity

Т

Т

Component Defect	Module Light induced degradation	in c-Si n	nodules (LID/L	.eTID)	PVFS 1-17vs.02
Appearance	Light induced degradation in c STC output power, but also sh time of a PV system. It isn't cor non-uniformity of electrolumine light an ongoing degradation p	crystalline s ort circuit c related with escence in rocess.	silicon modules current and open n any visual defe nages (patchwor	is recogr circuit v ct or othe k pattern	hisable mainly as a drop in oltage, within the initial life- er failure modes. Increasing a) can in some cases high-
Detection	IV, (EL, IRT)				
Origin	Two different light induced deg LeTID (light and elevated temp at cell level, but the physical m to the concentration of boron correlated to the concentration understood. Mainly p-type bo fected. Gallium-doped and high type PERC, HJT, or n-PERT se radation effects. LID occurs or 1-3%, whereas LeTID is in a mo LeTID was observed for the fir The degradation can reach up temperatures above 50°C. The erage module temperature and it occurs is in the order of mag ules can regenerate, recoverin climate-dependent. The lost po lifetime of a module. There ex modules in the field, but they ar most manufacturers adapted th	radation ef perature in echanism and oxyge of hydrog ron-doped n-efficiency eem to be ly within th pre severe rest time wit to 10% and e speed wit d is therefo nitude of y ng the lost ower may e ist approad re typically neir cell pro	fects are known: duced degradati staying behind the n in the cells, we gen in the cell, be multi and mone cell technologies much less or no ne first days of e and long-term lig h the introduction d sum-up with the th which the dego ore strongly site of ears. Once the f power. This prote- even not recover ches of accelera costly and not ve boduction process	LID (ligh on). Both hereas the ut the me o crystalling that us that us that us that us that all converted in of PEF e LID lose radation depender full degra cess is h over the ted regen ery user-factors	at induced degradation) and in degradation modes occur different. The first is related he second one is probably echanisms are still not fully ine silicon modules are af- e n-type wafers, such as n- oncerned by these two deg- to the sun and is limited to ed degradation mechanism. RC modules on the market. s. It occurs only at elevated occurs depends on the av- nt. The time frame in which dation is reached the mod- owever very slow and also a typically expected 25-year neration of LeTID-sensitive friendly. Over the last years ise the cells in-line.
	Production	Installatio	n 🗌	Ор	eration
Impact	LID or LETID causes no safety yield and financial return. An un the energy yield predictions at because it is generally less se labelling the modules and defir rate and the difficulty to predic warranties and system owners laboratory.	y problems inder-estim nd investo evere and hing the firs at the trend a. The sens	, but it has a neg ation of the initia r expectations. I it is taken into a st year warranty, d over time is mo sitivity of PV mod	gative im I degrada ID is les account b whereas uch more dules to	pact on the lifetime energy ation has a direct impact on as critical for the investors, by the manufacturers when a high LeTID degradation critical for manufacturers' LeTID can be tested in the
	Safety:		Performance:	⊢2 3	1
Mitigation	Corrective actions	Preventiv (recomme	e actions ended)	Pre (op	eventive actions otional)
	(recommended)(recommended)Confirm underperformance through an accredited PV test laboratory. Claim for missing power.Verify power warranties. Ver- ify the use of LeTID stable cells by module manufacturer. t and the stable to the stable cells by module manufacturer.				quest test reports with % wer loss for realistic estima- ns. Stipulate a contractual reement on tolerated loss. st individual modules. Ver- BOM (cell type).

Component	Module			PVFS 1-18vs.01					
Appearance	A module with bad insulation be world) are not directly visible measurement of the insulation humid/wet conditions. It can be can potentially lead to insulation or in the early morning when the tected by the inverter (low insu- value falls below a certain limit	A module with bad insulation between its current carrying parts and the frame (or the outside world) are not directly visible by eye. An unequivocally detection is only possible through a measurement of the insulation resistance of the module under dry (≥40 Mohm/m ²) or better numid/wet conditions. It can be sometimes deduced by the presence of visual defects which can potentially lead to insulation problems. Under certain circumstances like after a rain fall or in the early morning when the PV modules are covered by dew, this kind of defect is detected by the inverter (low insulation fault) or the inverter is switching off when the resistance value falls below a certain limit.							
Detection	INS, (MON)								
Origin	nsulation failures can have different causes. It can occur in the design/production phase of a nodule, due to solar cells too closely positioned to the frame or to material weaknesses like he use of inadequate encapsulation or backsheet materials or a poor lamination process. In he installation phase it can be caused by mechanical damages of the module, whereas in the operational phase it is generally caused by catastrophic events or due to a delamination process close to the edge of the module or water ingress or condensation in the junction box. Modules with failed or skipped insulation test in production due to an insufficient quality assurance could be also the origin of the problem. Various module failures are at the origin of an insulation failure: backsheet and encapsulant delamination, backsheet damages, burn marks, glass breakage.								
	Production	Installation	Opera	ation					
Impact	A low insulation resistance at r inverter failure occurs. The pre a safety hazard exposing perso parts of the string or frame can measuring instruments.	nodule level itself does sence of an electrical le ons to a potential electric n cause severe injury, v	not lead to a po akage current t shock hazard vithout the use	erformance loss, until an to the frame can become . Touching non-insulated of safety gear and safe					
	Safety:	Performanc	e: 1 2 3 4	5					
Mitigation	Corrective actions	Preventive actions (recommended)	Preve (optio	entive actions nal)					
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules. In case of in- dividual module testing all modules which failed the insu- lation and/or wet-leakage test should be replaced.	Check validity of IEC certification and BOM missioning of syster IRT, ground fault dete inverter or other device time.	61215 Regu 1, com- Insula m with with r ction by instal es at all	lar system inspections, ation testing of modules nobile test centre before lation.					

Component	Module					PVFS 1-19vs.02
Defect	Hot spot	(thermal patterns)			
Appearance	A hot spot deviates fro such as e.e lead to irre breakage . progress o and irradia	is a thermal abnorr om the normal behav g. infrared thermogra eversible hot spot da The position, size, in f the failure, but also nce level).	mality such viour of a m aphy (IRT). amages lik ntensity an under whi	n as a local over odule. It can be Hot spots are no a e.g. local yel d pattern of the h ch conditions the	rheating detecte ot visib lowing hot spo e modu	g or a thermal pattern which ed only by imaging techniques le by the naked eye until they , burn marks, glass or cell t/s depends on the origin and le is operating (shading, load
Detection	IRT, (VI)					
Origin	A hot spot cells (see PVFS 1-09 induced de mismatch, operating curs, the a which can cell(s) can sulant and diodes are help in red	not spot can be triggered by various factors, including (i) previous failures, like damaged Is (see PVFS 1-01), glass breakage (see PVFS 1-08), poor electrical connections (see FS 1-09 and 1-14), insufficient bypass diode protection (see PVFS 1-15) and potential- uced degradation (PID) (see PVFS 1-10), (ii) production-related issues, like severe cell smatch, low-quality solar cells, or poor module manufacturing processes, or (iii) non-ideal erating conditions like shading or soiling (see PVFS 1-20). When shading condition oc- is, the affected cell or group of cells is forced into reverse bias, causing it to dissipate power, ich can lead to overheating. If the power dissipation is high or localised, the reverse biased I(s) can overheat, potentially resulting in melting of solder joints, deterioration of the encap- ant and/or backsheet, and even glass breakage. To reduce the effects of hot spots, bypass des are connected in parallel with cells. Properly designed and functioning bypass diodes ip in reducing hot spot damages from occurring.				
	Production		Installatio	n 📃	C	Dperation
Impact	Hot spot for in cell sort modules u insignificar nently acti module. Th PV module heating. M ages or to be further may indica PVFS 1-14 accelerate ules aren't maintenan resulting in was a qua	ormation does not all ing and PV module sually do not indicat int power loss. Power vated and conseque he impact on system es are affected. Sev odule safety can be a fire. Temperature of controlled to preven ite damaged bypass 4 and 1-15). Differen d degradation of poly replaced, temperature ce can also lead to he module damage. In lity issue or insufficie	ways result production a quality is reduction ently the comparison performan ere losses compromi differences t temperat diodes or ces over 2 wmer mater ure different high tempe such case ent mainter	t in significant po , thermal abnorr ssues. Most mod becomes signific ell string is cut o ce is only noticea s can occur if PI sed when overh of 10 K to 20 K sure increases d junction box fail 0 K (at approxin rials and loss of in nces may rise fu ratures due to b s, it may be chall nance.	ower lo malities dules v cant wh off from able in D is th eating (at app uring P ures, p nately 8 nsulatio urther. ird drop lenging	ss. Due to normal tolerances a under 10% of the inspected with a single hot cell have an nen a bypass diode is perma- power production of the PV its energy yield when multiple e origin of the abnormal cell leads to critical module dam- proximately 800 W/m ²) should PV system operation, as they osing direct safety risks (see 800 W/m ²) are critical, risking on properties. If affected mod- Lack of regular cleaning and opings or power mismatches, to identify whether the cause
	Safety:	N/A		Performance:	N/A	
Mitigation	Corrective	actions	Preventiv (recomme	e actions ended)	F (*	Preventive actions optional)
	Modules w risk or a se be replac more than thermal a reason for should be rective act	with a direct safety everity of 5 should ed or repaired. If 10% modules show abnormalities, the or that behaviour evaluated and cor- ions implemented.	Commiss with IRT o	ioning of sys or BYT.	stem F	Regular system inspections i.e. IRT).

EXAMPLES (pa	age1)				PVF	S 1-19vs.02
Pattern	Description	Origin	Performance	Remarks		Safety
Example 1	One module warmer than others	Module could be open circuited - not connected to the system	Module normally fully functional,	Check wirin	ıg	
Example 2	One sub-string of serially connected cells is warmer than others in the mod- ule	Open circuited sub- string - Disconnection in junction box or sub- string	Sub-string power lost, reduction of <i>V</i> oc	May have b spot at the Replace P∖ ule.	ourned module. / mod-	
Example 3	One substring over- heated with irregu- lar pattern	Short circuited by- pass diode or short- circuited substring	Sub-string power lost, reduction of <i>V</i> oc	Replace mo	odule	
Example 4	A single cell ap- pears warmer, while there are mul- tiple warmer cells with an irregular pattern in the paral- lel-connected sub- string.	Shaded or defected cell (bypass diode activation)	Power decrease not necessarily perma- nent, e.g. shadow- ing leaf or lichen	Visual inspe needed, cle (cell misma	ection eaning tch).	T T
Example 5	Single cells are warmer, not any pattern (patchwork pattern) is recog- nized	Whole module is short circuited - All bypass diodes short circuited - Array wiring failure	Module power dras- tically reduced (al- most zero), strong reduction of V _{oc}	Check wirin (see PVFS	ıg 1-15)	
Example 6	Single cells are warmer, lower parts and close to frame hotter than upper and middle parts.	Massive shunts caused by potential induced degrada- tion (PID) and/or polarization	Module power and <i>FF</i> redu- ced. Low light per- formance more af- fected than at STC	Change arr grounding c tions. Reco reverse volt (see PVFS	ay condi- very by tage 1-10)	
Example 7	One cell clearly warmer than the others	- Low <i>I</i> _{sc} perfor- mance of cell - Shaded or de- fected cell	Power decrease not necessarily perma- nent, e.g. shadow- ing leaf or lichen	Visual inspe needed, cle (cell misma (see also P 1, 1-3, 3-3)	ection eaning tch) VFS 1-	
Example 8	Part of a cell is warmer	 Low <i>Isc</i> performance of cell Shaded or defected cell Disconnected string interconnect 	Power decrease not necessarily perma- nent, e.g. shadow- ing leaf or lichen, <i>FF</i> reduction	Visual inspe needed, cle (cell misma place PV m (see also P 1, 1-7, 1-9)	ection eaning tch). Re- odule VFS 1-	f

EXAMPLES (pa	age2)				PVF	S 1-19vs.02
Pattern	Description	Origin	Performance	Remarks		Safety
Example 9	Point heating	 Formation of mi- cro-arc in the inter- connection circuit Junction break- down at cell caused by shading 	Power reduction	Crack det ter detaile inspectior cell possil Replace F (see also 1, 1-7, 1-9	ection af- ed visual n of the ble. PV module PVFS 1- 9)	f
Example 10 Dashed: shaded area	Sub-string part re- markably hotter than others when equally shaded	Sub-string with missing or open-cir- cuit bypass diode	Massive <i>I</i> _{sc} and power reduction when part of this sub-string is shaded	May caus fire hazar hot spot is sub-string (see also 15, 3-3)	e severe d when s in this PVFS 1-	
Reviewed typical	IR image patterns	observed in outdo	oor measurements	[Köntges	s14].	

Component Defect	Module Soiling					PVFS 1-20 vs.01	
Appearance	Soiling is visible as a module. The deposition ence of hot-spots caus	deposition n can be u sed by non	n of dust niform of -uniform	dirt or other co non-uniform an soiling, it can be	ntamin d vary i e also s	ants on the surface of a PV in thickness. Due to the pres- seen through IRT imaging.	
Detection	VI, (IRT, MON)						
Origin	Soiling of PV modules droppings or growth o desert areas, seasona ing, industry, high way persistence over time size as well as the loc- cleaning of modules, h tation of dust on the m from the edge), the ori ditions (e.g clamps, he Typically soiling increa- influence the soiling pr	oiling of PV modules can have various origins such as dust accumulation, air pollution, bird roppings or growth of moss, lichens or algae. It can be due to natural sources, as sand in esert areas, seasonal pollen or volcanic emissions, or due to human activities, as near min- ing, industry, high ways, railways, urban or agricultural surroundings. The soiling level and its ersistence over time depends on the exposure time, the chemical composition and particle ze as well as the local climate conditions. Whereas rainfalls and wind can lead to a natural eaning of modules, humidity can have a contrary effect by increasing adhesion and cemention of dust on the module. The module design (e.g glass coating, frame, distance of cells om the edge), the orientation (e.g tilt angle, azimuth, landscape/portrait) and mounting contions (e.g clamps, height above ground, stringing) of the modules plays an important role. ypically soiling increases as tilt angles decreases. The direction of the wind or obstacles can fluence the soiling process, leading to non-uniform patterns on system and module level.					
	Production		Installat	ion 📃	C	Dperation	
Impact	The deposited soiling the solar cells, with a c it is reversible when the yield and financial retu- periods and dust, extri- cleaned. In temperate between 0% to 4%. In straints of the natural angle) much higher low losses which further in permanently damage a (PID), soiling can furth by cleaning the modul appropriate to the type ability). The cleaning s wind or dew can have a in reducing soiling and the type of soiling pre- which do not damage a increase transmission	osited soiling layer causes optical losses, reducing the amount of light that reache cells, with a consequential performance drop. Soiling is not a real module failure, a rsible when the module is cleaned, but it has a negative impact on the lifetime energ d financial return. Soiling is a site-specific issue. In arid regions with seasonal dr and dust, extreme soiling losses of up to 25%/a are reported, if modules are no In temperate regions with year-round rain, the annual soiling losses typically range 0% to 4%. In case of specific soiling sources (e.g. railway, farming, etc.) and/or con of the natural cleaning effect due to unfavourable mounting conditions (e.g low ti buch higher losses can be observed. Non-uniform soiling leads to current mismatci /hich further increases the power loss and to hot-spots which in extreme cases can ently damage a PV module. In modules affected by potential induced degradation biling can further accelerate the ongoing degradation effect. Soiling can be mitigated ing the modules or preventing excessive soiling. The cleaning approach has to be ate to the type of soiling and site specific conditions (e.g. accessibility and water avail The cleaning schedule should take into account that natural agents, such as rain-falls dew can have a natural cleaning effect at no cost. Anti-soiling coatings (ASC) can hel- ing soiling and stretch the cleaning frequency, but only if the coating is adequate for of soiling present on the system and if adequate cleaning processes are followed on to damage the coating. Moreover, it has to be considered that some ASC can also on the anage the coating. Moreover, it has to be considered that some ASC can also on the mange the coating. Moreover, it has to be considered that some ASC can also on the anage the coating. Moreover, it has to be considered that some ASC can also					
	Safety:			Performance:	⊢2	3 4 5	
Mitigation	Corrective actions		Prevent (recom	ive actions mended)	F ((Preventive actions optional)	
	Cleaning by qualified p recommended when nue lost because of th energy production is hi the cleaning cost. A be clean should be define	(recommended)(optional)lified persons is when the reve- e of the missed on is higher than it. A best time to defined.Preliminary site inspections for the assessment of the soiling risk. Cost estimation for the implementation of mitigation measures. Regu- lar visual inspections to con- trol the soiling level.Estimation or measures soiling losses prior to soiling losses prior to ton. Installation of s sors to determine profitable time to clear				Estimation or measurement of coiling losses prior to installa- tion. Installation of soiling sen- tors to determine the most profitable time to clean.	

EXAMPLES	(page1)				PVFS	1-20 vs.01	
Examples 1-3							
	Uniform light s ideal conditions when raining [By SUPSI PVLab].	oiling, which ir is self-cleaning y the courtesy o	Uniform heavy s rail way station f of SUPSI PVLat	soiling caused by [By the courtesy p].	Non-uniform so low inclination a ing to roof [By SUPSI PVLab].	iling caused by ind close mount- the courtesy of	
Severity		-2		<u>⊢3</u> 41		⊢231	
Examples 4-6							
	Moss growing o module combine ing [Köntges17].	on the edge of a ed with edge soil	 Soiling pattern o Atacama desert of ISE FhG]. 	n a system in the [By the courtesy	Soiling pattern demonstrating dominant wind direction on a test site in Atacama desert [By the courtesy of ISE FhG].		
Severity	•	-231		<u>⊢3</u> 41		<u>⊢</u> 3 41	
Examples 7	Heavy biofilm ges16].	soiling [Könt					
Severity		<u>⊢ </u>					

Component Defect	Cables and Interconnecto DC connector mismatch	rs			PVFS 2-1 vs.01			
Appearance	Combination of male and fer (cross-mating) between modul	male DC-co les, strings,	onnectors of two arrays or to the i	o different n nverter.	nanufacturers or types			
Detection	VI, (IRT)							
Origin	There is yet no standard for PV it is possible to find very simila advertised as 'compatible'. SI duced water and vapour tightn rials (chemical incompatibility of gaskets or sealings. Most of the where extension cables are un which has been delivered with	ere is yet no standard for PV connectors prescribing dimensions and tolerances. Therefore, s possible to find very similar-looking and even apparently fitting connectors on the market, vertised as 'compatible'. Slight differences in the design of the connector can lead to re- ced water and vapour tightness. Problems may also occur due to incompatibilities of mate- ls (chemical incompatibility or different thermal expansion parameters) of the metal contact, skets or sealings. Most of the time the mismatch of connectors occurs at the string end here extension cables are used or when connecting an inverter or a string combiner box, nich has been delivered with incompatible connectors.						
	Production	Installation						
Impact	The interconnection of connective risk of loss of performance and TR 63225:2019]. The consequence arcing and in the worth case flow through the connection at only over time with increasing humid weather conditions missiverter or a ground fault. The fir positioned and are close to flar materials. Often connectors at spected during normal visual in or even in BIPV). In combinate different brand or type of connectors are specificated by the section of the	tors from di defects wh lences are a fire . One t all. The pro- g contact re- matching co- matching co- matc	ifferent manufaction inch cause hazard e.g. contact corr of the most corr roblems do not m esistance and/or onnectors can als ther increased what ther increased what erial such as wo partly installed at e.g. within profile or unclear compation result in high risk	urers may si ds for human osion, burn mon failure anifest then degradation so lead to a nen the conr oden roof be position wh s, undernea tibility issue	gnificantly increase the n and environment [IEC it connectors, electrical s is that no current will nselves right away, but of the connector/s. At partial failure of the in- nectors are not properly eams or heat-insulation here they cannot be in- th roof parallel modules , the interconnection of			
	Safety:		Performance:	1234	5			
Mitigation	Corrective actions	Preventive (recomme	e actions ended)	Prever (option	itive actions al)			
	All not matching connect- ors should be replaced.	Ask supp ule/inverte the type/n nector, or the same certified a be mated	plier or check m er spec sheets nanufacturer of c nly connectors fr e manufacturer a s compatible sho together.	od- Verify for inverte on- the sa om sion of and string ould of the ule cor	that both modules and rs are delivered with me connectors. Provi- spare connectors and cables with connectors same type as the mod- nnectors.			

EXAMPLE	S (page1)					PVFS	2-1 vs.01
Examples 1-2							
	Connectors (ma of different brand viously do not m	le of female) are d or type and ob- atch [Moser17].	Connectors (ma of different bran viously do not n	ale of female) are nd or type and ob- natch [Moser17]			
Severity	f	12345	f				
Examples 3-5							
	Corroded conne mating [By th Stäubli].	ctor due to cross- ne courtesy of	Melted connec mating [By t Stäubli].	tor due to cross- the courtesy of	Burned mating Stäubli	I connector [By the].	due to cross- courtesy of
Severity	f e	⊢ <u></u> 4 5	f e	·-···			5
Examples 6-7		Different body mouldings		Red 'O' ring Bi	ack 'O' ring	Logo 'TUV'	Logo MC4 brand
	Different types of ferent body mou guide].	of connectors reco Idings and cable	ognisable by dif- gland nuts [ESV	Different types o ferent 'O' rings or	f connec · logos [E	tors recogn ESV guide].	isable by dif-
Severity	f e	1		f e		1	<u> </u>

Т

Component	Cables and Interconnectors									
Defect	Defect DC connector/cable	e	FVF5 2-2vs.01							
Appearance	A damaged connector or cable Opened connectors can demo heating or hot spots in an early	A damaged connector or cable appear as melted, burned, brittle, broken, cracked or whitened. Opened connectors can demonstrate corrosion. Affected connectors show very often over- neating or hot spots in an early state if a thermography check is performed.								
Detection	VI, (IRT)									
Origin	One of the major causes of damaged connectors are the combination of incompatible compo- nents (DC connector mismatch), a low quality connector or a bad installation. In the last case the connectors are either not installed according the instructions (e.g. bad crimping or connec- tion, exposure to rain or polluted before installation, installation of damaged connectors) or the connectors are not fixed correctly exposing them over longer times to humidity or dirt without allowing the connector to dry completely. In case of damaged cables the major causes are the use of low quality material in production (e.g. insulation material or cupper wires), an inade- quate selection of components within the design phase (e.g. undersized cables, too large ca- ble glands, inadequate IP classification or UV protection) or an improper handling or fixing of the cables in the installation phase (e.g. cable routing over sharp or abrading edges, hanging cables close to connections, overly tight bending, missing or not correctly installed cable glands or exposure to direct UV radiation).									
	Production	Installation	Operation							
Impact	Damaged connectors or cables constitute a high safety risk and may lead to the power loss of the whole string. The continuity of the circuit isn't any more guaranteed and inverter failures can occur (low insulation faults or inverter switch off), leading to partial or complete power losses. In the worst case damaged cables or not well-connected connectors may cause electric arcs. In many cases, the connectors and cables are much closer to flammable material such as wooden roof beams or heat-insulation materials than the PV module laminate, increasing the risk of fire									
	Safety:									
Mitigation	Corrective actions	Preventive actions (op- tional)								
	Components constituting a direct safety risk should be replaced. Regular inspections should be done to monitor the status of the not replaced components.	Protection of connectors and cables from humidity during installation. Use of adequate crimping tools. Installation should be done by trained personal.	Signature of a contractual agreement for maintenance of the warranty when connectors are substituted by the installer, perform regular system inspections.							

EXAMPLES	(page1)					PVFS 2-2	2 vs.01
Examples 1-3							
	Weathered co ges17].	nnector [Könt-	Cracked connec	tor [Köntges17].	Corroded connector [Könt- ges17].		
Severity	f e	-23		<u> </u>			3 4 -1
Examples 4-6						Z	K
	Not fully inserte connecter [Yang	d or interlocked 19].	Melted connecto	or [Köntges17].	Cracked/disintegrated cable in- sulation [Köntges17].		
Severity	f e	H 2 3	f	<u>⊢ </u>			3 4 5
Examples 7	Incorrect crimpin	g (right) versus co	orrect crimping (le	ft) [PVSurvey19].			
Severity		y (nynt) versus co		ny [F vourvey 19].			

EXAMPLES	(page2)					PVF	S 2-2	vs.01
Examples 8-10		P						
	Burned connecto	or [Köntges17].	Corroded Cable	[Köntges17].	Animal ges17].	bite or	n cable	[Könt-
Severity	e e	⊢ 5		1 2 3		e	⊢−−− _3	4 5

Component Defect	Cables and Interconnector Insulation failure	rs			PVFS 2-3 vs.01			
Appearance	A bad isolation of cables is not always visible by eye. An unequivocally detection is only pos- sible through the measurement of the insulation resistance under dry or humid/wet conditions. It can be sometimes deduced by the presence of degraded or damaged cables and/or con- nectors. Under certain circumstances like after a rain fall or in the early morning when the cables or connectors are exposed to humidity, this kind of defect can lead to inverter failures (low insulation fault or inverter switch off).							
Detection	VI, (INS, MON)	√I, (INS, MON)						
Origin	Isolation failures occurs as a result of a short-circuit. It is usually the result of a combination of humidity and damaged or degraded DC cables or connectors .							
	Production	Installation Operation						
Impact	A low insulation resistance due to the cables or a connector does not lead to a performance loss itself, until an inverter failure occurs. An isolation fault can however cause potentially fatal voltages in the conducting parts of the system potentially exposing persons to an electric shock hazard. Touching of non-insulated parts may cause severe injury, without the use of safety gear and safe measuring instruments. In the worst case damaged cables or connectors may cause electric arcs and initiate a fire.							
	Safety:		Performance:	-234	5			
Mitigation	Corrective actions Pr (re		Preventive actions (recommended)		tive actions al)			
	Cables or connectors con- stituting a direct safety risk should be replaced. Regular inspections should be done to monitor the status of the not replaced components.	Ground fault detection by in- verter or other devices at all time.		n- Regula all	r system inspections.			

Component Defect	Cables a Therma	Cables and Interconnectors Thermal damage in combiner box							
Appearance	Defects a fuses. Da	Defects appearing in the combiner box as discoloured or burned cable interconnections or uses. Damaged parts can be found by visual inspection or infrared thermography (IRT).							
Detection	VI, IRT, (VI, IRT, (MON)							
Origin	Thermal (e.g unde wire torqu	Thermal damages in the combiner box can be due to the selection of inadequate components (e.g underrated fuses or fuse holders), a not proper connection of DC cables (e.g improper wire torqueing, missing fuses) or a wrong wiring of the modules/strings in the field or on-roof.							
	Production				Ope	ration			
Impact	This damage is caused by the excess heat generated in fuse holder and defect DC connect-ors/cables . The partial or complete thermal damage of the combiner box leads to performance losses, electrical shock hazards and risk of fire. Actions must be taken immediately by qualified personnel to prevent further damage.								
	Safety:	f e m f e	m	Performance:	123	2 3 4 5			
Mitigation	Correctiv	Corrective actions Preventive actions (recommended)			Prev (opti	Preventive actions (optional)			
	Replace the components with defect or abnormal tempera- ture. Use IRT to check the compo- nents and connection to find poor connection or defect components.								

EXAMPLES	(page1)				F	S 2-4 vs.01
Examples 1-3	Burned termina	al block of the	Improper wire to a fire [Köntges16	rqueing causes 5].	Connection shores ion ITUV Rheir	w signs of corro-
Severity		·····		<u> </u>	f e m	12
Examples 4						
	Connecting term of burning, ha charred [TUV RI	inals show signs ave melted or neinland].				
Severity	f e m	<u> </u>				

Г

Component Defect	Mounting Bad mod	ule clamping		PVFS 3-1 vs.01					
Appearance	Inadequate	e fastening or damag	ge of the m	odule or frame by	the clamp.				
Detection	VI	/I							
Origin	The installa not followe clamps for glass/glass short and t not being c sively or in	The installation instructions of the module and mounting structure from the manufacturer are not followed. Typical errors at the planning and installation stage are: (a) use of inadequate lamps for the selected module and/or mounting structure, e.g. sharp edges damaging lass/glass modules, wrong combination of clamps and modules or mounting structure (b) too hort and too narrow clamps or (c) the positions, kind or number of the clamps on the module of being chosen in accordance with the manufacturer's manual. Other errors are too exces- tively or insufficiently tightened screws during the mounting phase.							
	Production	Production Installation Operation							
Impact	An imprope of the mod can happe it. Once on and result is posing a the proper breakage electrical s	An improperly installed clamp compromises the integrity of the mounting system and the ability of the module to stay in place under high wind or load conditions. The detachment of modules can happen as series effect because the modules share the clamps with the module next to it. Once one module is detached, the clamp immediately loses fixing force on the next module and result in series detachment. The detachment of the module/s from the mounting structure is posing a serious hazard to persons and the risk of damaging the rest of the system and/or the property in the vicinity of the installation site. Problems such as frame damage, glass breakage or cell cracks can occur compromising on the long term the performance and the electrical safety.							
	Safety:	f e m e	e m e m Performance:			5			
Mitigation	Corrective actions		Preventive actions (recommended)		Preven (option	tive actions al)			
	Modules with a safety risk or a severity of 5 should be replaced. Use only compatible clamps (mounting structure/ modules/ clamps) and follow manufac- turer mounting instructions. Check local wind and snow loads.				ps Testing es/ mounti ac- accred ns. facade ow regular	y of non-standard ng configurations by an ited test laboratory (eg. mounting), perform system inspections			

EXAMPLES	6 (page1)					PVFS	5 3-1 vs.01
Examples 1-3							
	Improper installati courtesy of SUPS	on of clamp [By I PVLab].	Wrong combina and modules [M	tion of clamps oser17].	Glass br tight scre also PVF	eakage ca ews [Herrn S 1-8)	aused by too nann21]. (see
Severity		1			f m	e m	-234-
Examples 4							
	Glass breakage of clamp design [N also PVFS 1-8)	caused by poor Moser17]. (see					
Severity	f m e m	⊢234⊣					
Component	Mounting						
---	---	--	--------------------------	---	--	-------------------------	--
Defect	Inappropriate/defect mounting structure						
Appearance	Mechanica or mountin	al damages (e.g crao g holes) observable	cking, benc on the mo	ling) or other visu unting structure.	al defects (e.g. corrosion of frame	
Detection	VI	VI					
Origin	Typically, this failure occurs when the mounting structure is not designed to withstand the wind or snow loads which are typical for the site in which the system is installed (e.g. mounting structure does not comply with static calculations, underestimation of the environmental conditions), or if the anchorage of the mounting structure to the ground or roof is weak (e.g. ground conditions are not considered sufficiently when choosing the mounting structure). The roof strength, to withstand the added load of the PV system and include allowance for O&M activities, is not verified. Another reason for the failure of a mounting structure is the use of inappropriate materials (e.g use of corrosive materials in a corrosive environment, insufficient galvanisation, poor quality material due to a bad or missing quality assurance in production), leading to a premature degradation or mechanical failure of the mounting structure. Installation errors (e.g. missing/non-original components, excessively or insufficiently tightened screws) can be the origin of a failure of the mounting structure.						
	Production		Installatio	n 📃	Operat	ion	
Impact	An inappropriate or damaged mounting structure compromises the integrity of the modules mounted on it and in some cases also the substructure (e.g roof insulation). In the worst case this leads to the detachment of single modules or the whole mounting structure from the roof or ground, or roof collapses, posing a serious hazard to persons and the risk of damaging the rest of the system and/or the property in the vicinity of the installation site. Performance losses are to be expected, depending on the damage on module level (number of disconnected modules/strings, glass breakage, cell cracks, back sheet damages, damaged or detached junction box) and the time and labour needed to repair the system. Galvanic corrosion is important for the installation with two different metals in contact, for example aluminium frame fixed on steel structure, especially in humid or costal area. Direct contact of different metals generates galvanic corrosion which frequently happens around the fastening screws. Therefore insulation between two different metals is required in humid and costal area.						
	Safety:	(f) (e) (m)		Performance:	1234	5	
Mitigation	Corrective	actions	Preventiv (recomme	e actions ended)	Prever (option	ntive actions al)	
Mounting structures with a direct safety risk should be replaced or repaired.		Use only compatible mount- ing structures (ground/mount- ing structure/modules) and follow manufacturer mounting instructions. Check local load (conditions (wind, snow, other).		nt- Regula nd ng ad ad w, form tions.	ar system inspections. g of non-standard ng configurations by an ited test laboratory acade mounting), per- egular system inspec-		

EXAMPLES	(page1)				PV	FS 3-2vs.01
Examples 1-3						
	Corrosion due to ges16].	salt water [Könt-	Cracks in mour to mechanical s ges16].	nting structure due stress [Könt-	Screw canal chanical stres	bends due to me- s [Köntges16].
Severity		1 2	m	1	m	1
Examples 4-6						
	Bracket fractured mechanical stres	due to s [Köntges16].	Undersized m for local snov [Köntges16].	ounting structure v load conditions	Undersized m for local win dia13].	nounting structure d conditions [In-
Severity	m	1	m		m	

Component Defect	Mounting Module shading					PVFS 3-3 vs.01
Appearance	Depending on the position of the sun (day and time), shading can be seen either by eye when performing a visual inspection, or by comparing monitoring data of unshaded and shaded strings or by running shading simulations. The shade can have different patterns and change/move over the day and season.					
Detection	VI, (MON, IRT)					
Origin	The choice of the mounting structure and the position in which the modules are mounted in- fluences the shading conditions. Shading can be caused by different factors or obstacles e.g trees, antennas, poles, chimneys, satellite dishes, roof or façade protrusions, near buildings, cables, or by self-shading (inter array or row-to-row shading) or soiling. Shading conditions can change over the lifetime of a PV system due to growing vegetation, new constructions or construction elements. It can be distinguished between different types of shades: direct shades hindering the direct light to reach the module or diffuse shades.					
	Production	Ir	nstallatior	ו 🗌	Opera	tion
Impact	A cell or module which does not receives or receives less sunlight due to a shading obstacle, lowers the performance of a PV system. Typically, the cumulative annual shading loss of PV systems is between 1-5%, but energy losses up to 20-30% can be observed for roof top or façade systems. Due to series connection of cells and modules, the power loss is significantly higher than the shaded area. The final loss depends on the on-site implementation or shading mitigation measures like optimised string and module arrangements (landscape mounting), use of module-level power electronics (MLPEs), inverter characteristics (MPPT search algorithms, string control) or the use of shading tolerant module technologies (e.g half-cut cells, back contact cells). Shading itself does not pose a safety issue, but the hot-spots caused by prolonged shading can lead to follow-up failures (e.g burn marks, bypass diode failures, glass breakage, arcing or fire). It further can result in an acceleration of the aging process resulting into higher degradation rates. The right time to consider the impact of shading is at the system planning phase, later it is usually too late. The use of MLPEs such as micro-inverters and DC optimizers for individual modules can potentially increase performance under shading conditions, but the gain achieved by these devices do not always exceeds the loss caused by the MPLE device itself (lower efficiency), and the shading still activates the bypass diode and result in hot spot on the shaded cell, which increases the risk of reliability issues. The choice of using them only in the area where shading occurs should be considered an					
	Safety:	m		Performance:	⊢234	5
Mitigation	Corrective actions	P (Preventive (recomme	e actions ended)	Prever (optior	ntive actions nal)
	Indirectly damaged mod- ules with a safety or sever- ity risk of 5 should be re- placed or repaired. Eventual trees or vegetation responsi- ble for the increased shading loss should be cut.		A basic shading analysis (full year solar/shade data) is rec- ommended to identify areas and periods of major shading. Areas exposed to shading within the central part of the day or sunny season should be avoided or appropri- ate/cost-effective shading mit- igation measure should be im- plemented.		full A deta ec- sis sho as mates ng. systen ng shadir he Perfor uld spectio ori- nit- m-	iled shading loss analy- ould be done which esti- and compares different n configurations and g mitigation measures. m regular system in- ons.

EXAMPLES	(page1)				PVF	-S 3-3 vs.01
Examples 1-3						
	Shading by pole design: too close ing objects) [Jah	e-and-wire (poor e to nearby shad- n18].	Shading due to coverage by afte struction elemen	bad planning or rwards build con- t. [Moser17].	Shading by tre changes du [Moser17].	ee with seasonal e to foliage
Severity		⊢234⊣		<u> </u>		<u>⊢3</u> 4 →-1
Examples 4-6						
	Missing mainte green roof [By co PVLab].	nance on flat ourtesy of SUPSI	Vertical shading module with 3 by courtesy of J.Lin	of a standard /pass diodes [By PV Guider].	Shading by bal tesy of J.Lin P	ustrade [By cour- / Guider].
Severity	f e m	<u> </u>		⊢ 1 3 4 5		
Examples 7	Continuous sha chimney [By con PVLab].	ding caused by urtesy of SUPSI				
Severity	f e m	<u>⊢</u> <u>3</u> 4 5				

- T

Component Defect	Inverter Overheating	PVFS 4-1 vs.01				
Appearance	The inverter reduces its power or switches off to protect components from overheating (tem- perature derating). Inverters do not always deliver a corresponding status message "power reduction" or "derating". For this reason, it is recommended to check the inverter behaviour by determining and analysing performance curves (Power vs Irradiance).					
Detection	MON, (IV, IRT)					
Origin	Temperature derating of the inverter can occur for various reasons, e.g. improper installation of the inverter, fan failure, dust blocking heat dissipation or an incorrect programming of the inverters.					
	Production	Installatio	n 🔲	Operat	ion 🔲	
Impact	When the monitored components in the inverter reach the maximum operating temperature, the inverter shifts its operating point to a lower power. During this process, power is reduced step-by-step. In the extreme case, the inverter switches off completely. As soon as the temperature of the threatened components falls below the critical value, the inverter returns to the optimal operating point. The partial or complete failure of the inverter leads to performance losses, which will get worse if the problem is not solved. In the worst case inverter will switch off. Inverter overheating do not affect module safety.					
	Safety:	Performance:		3 4	3 4 5	
Action	Corrective actions	Preventive actions (recommended)		Preven (option	tive actions al)	
	Once identified the origin of the temperature derating the failure should be repaired. The filters and in general heat dissipation path should be cleared of obstruction.	Follow the given installation procedure, use of adequate cooling technology, perform regular inspections of the ven- tilation units.		n Monito e ature n n-	ring of inverter temper-	

EXAMPLES	(page1)					PVFS 4-1vs.01
Examples 1-3	0 13-1	6		6/2/2014		
	Dust blocking heat dissipation [By courtesy of TUV Rheinland].		A soiled air filter heating [By cour Rheinland].	causes over- tesy of TUV	Installati rect exp tesy of T	on not appropriate (di- osition to sun) [By cour- 'UV Rheinland].
Severity		⊢ <u>+</u> ,3 <u>-</u> +,		⊢ <u>+</u> ,3 <u>+</u> ,		<u>⊢ • ₁3 • • •</u>

- T

Component Defect	Inverter Incorrect installation PVFS 4-2vs.0					
Appearance	The inverter must be installed according to the installation instruction. A common failures is the installation near flammable, explosive, corrosive or humid sources. Also the minimum distances to bottom, top or to the sides are not always fulfilled. If the input cables are not fixed properly, increased temperatures can occur at the loose contact point which lead to lower performance or risk of fire. Inverters must always be accessible for operation and maintenance and properly secured to an appropriate base.					
Detection	VI (MON)					
Origin	Violating instruction manual, e.g. installed nearby flammable materials as wood or in direct sun light. Minimum distance to adjacent components not maintained.					
	Production Installation				Operat	tion
Impact	Incorrect installation of the inverter can cause danger to users and hazardous conditions can result in overheating of the inverter. The use of the inverter in the presence of flamm vapours or gases can lead to explosions. The inverter housing can become very hot of operation. Follow the instruction to provide gaps from both sides and top for adequate co Direct sunlight on the inverters must be avoided. The inverter must be safely accessit avoid accidents during maintenance work.					zardous conditions and presence of flammable become very hot under op for adequate cooling. be safely accessible to
	Safety:			Performance:	1234	5
Action	Corrective actions		Preventive actions (recommended)		Prever (optior	ntive actions nal)
	Dismount the component and follow the installation proce- dure.		Follow the given installation procedure, use of adequate cooling technology, perform regular inspections of the ven- tilation units.		on Monito ate ature. rm en-	ring of inverter temper-

EXAMPLES	(page1)					PVF	S 4-2vs.01
Examples 1-3						ORA	8(5/2014
	Installation in dir courtesy of TUV	ect sun light [By Rheinland].	Inverters are no cessible for maintenance [I TUV Rheinland]	ot or difficult ac- operation and By courtesy of	Distance t sides too TUV Rheii	o bottor low [E nland].	m, top or to the By courtesy of
Severity		<u>⊢</u> ,3,	e m	<mark>⊢2</mark> 1	1		<u>⊢</u> ,3,
Examples 4-5	C C C C C C C C C C C C C C C C C C C						
	Housing not a courtesy of TUV	appropriate [By Rheinland].	Presence of inf rial [By court PVLab].	lammable mate- esy of SUPSI			
Severity		1	f	1			

Г

Component Defect	Inverter Not operating (complete		PVFS 4-3 vs.01			
Appearance	If the inverter does not work despite good production conditions, common problems are the lack of restart after grid faults or isolation faults . The inverter may show fault codes to help understanding the problem. This can be observed by checking the display or the data log of the monitoring system. Examples for hardware defects in the inverter are discoloured or burned cable interconnections or fuses. Damaged parts can be found by visual inspection or infrared thermography (IRT).					
Detection	MON, (VI, I-V, VOC)	MON, (VI, I-V, VOC)				
Origin	A complete failure of the inverter occurs due one or more malfunctions of single hardware or software component of the inverter or faults due to grounding issues, e.g. high humidity inside the inverter, or a firmware issue.					
	Production	Installation	Operatio	on 🗖		
Impact	The complete failure of the inverter leads to significant performance losses and immediate actions must be taken. When the restart does not work or the fault occurs recurrently the origin must be identified in most cases by a service team. Software issues can be solved by updating the firmware for technical reasons or to update the system to new standards/grid technical requirements. While damaged hardware components of central inverters are usually repaired, string inverter are replaced more often for economic reasons. Damaged hardware can cause fire and electric shock hazards and must be repaired by qualified personnel.					
	Safety:	Performance:		5		
Action	Corrective actions	Preventive actions (recommended)	Preventi (optional	ve actions I)		
	Restart the inverter. Replace the components with defect of abnormal temperature. Up date the software.	 Use IRT and VOC to check the components and connection to find poor connection of defect components. 	r			

EXAMPLES	6 (page1)		PVFS 4-3 vs.01
Examples 1-3			
	Insulation failure [TUV Rhein- land]	Not operating inverter [TUV Rheinland].	Damaged hardware component [Sinclair17].
Severity	e <u></u> 345		f e 5

